Tropical Cyclone Report Tropical Storm Chris (AL042006) 1-4 August 2006

Stacy R. Stewart National Hurricane Center 14 December 2006

Updated 10 January 2007 to adjust storm ID from AL032006 to AL042006

Chris was a tropical storm whose center remained north of the Lesser Antilles before the cyclone weakened and moved across the Turks and Caicos and the southeastern Bahamas as a tropical depression. Chris had little impact on these areas.

a. Synoptic History

The tropical wave that eventually spawned Chris moved off the west coast of Africa early on 26 July, and maintained vigorous convection for the next couple of days as it moved westward at 15-20 kt. By late on 28 July, the convection weakened considerably and also became less organized as the system moved into a region of large-scale subsidence and drier air in the middle- and upper-levels of the troposphere. Although convective activity became disorganized, the wave's wind field remained well-defined. The wave continued to propagate westward at a slightly slower forward speed, and a small burst of deep convection developed on the northern end of the sharp wave axis early on 30 July about 550 n mi east of the southern Leeward Islands. Convection continued to increase in vertical depth and organization, and Dvorak satellite classifications were initiated by the Tropical Analysis and Forecast Branch at 1745 UTC. Late on 31 July, the system turned west-northwestward and convective organization rapidly increased. As the wave passed just north of French buoy 41100, the winds at the buoy switched direction from northeasterly to westerly, indicating a small surface low pressure area existed along the wave axis, which confirmed a similar signature in QuikSCAT wind data around 2100 UTC. It is estimated that a tropical depression formed at 0000 UTC 1 August about 205 n mi east-southeast of Barbuda. The "best track" chart of the tropical cyclone's path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1.

The depression continued on a west-northwestward track at a slower forward speed of about 10 kt and, despite moderate upper-level westerly wind shear, strengthened into a tropical storm 6 h later. Aircraft reconnaissance flights into Tropical Storm Chris ensued around midday, and flight-level wind data indicated Chris had strengthened and become better organized. The cyclone reached its peak intensity of 55 kt early on 2 August about 55 n mi east-northeast of Anguilla in the northern Leeward Islands. Around midday on 3 August, a strong subtropical high pressure system to the north forced Chris westward, and the cyclone began to weaken as both westerly upper-level shear and dry air entrainment increased (Fig. 4). Chris passed about 100 n

mi north of Puerto Rico and Hispaniola and weakened to a tropical depression at 1800 UTC when the cyclone was centered about 195 n mi east-southeast of Grand Turk Island.

As the depression moved westward toward Great Inagua Island in the southeastern Bahamas, increasing wind shear caused associated thunderstorm activity to dissipate and Chris degenerated into a non-convective remnant low pressure system by 0600 UTC 4 August about 80 n mi east-southeast of Grand Turk Island. The remnant circulation accelerated slightly as it skirted the northern coast of Cuba for the next 60 h before it dissipated at 1200 UTC 6 August near Havana, Cuba.

b. Meteorological Statistics

Observations in Tropical Storm Chris (Figs. 2 and 3) include satellite-based Dvorak technique intensity estimates from the Tropical Analysis and Forecast Branch (TAFB), the Satellite Analysis Branch (SAB) and the U. S. Air Force Weather Agency (AFWA), as well as flight-level and dropwindsonde observations from flights of the 53rd Weather Reconnaissance Squadron (WRS) of the U. S. Air Force Reserve Command. Microwave satellite imagery from NOAA polar-orbiting satellites, the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA QuikSCAT, and Defense Meteorological Satellite Program (DMSP) satellites were also useful in tracking Chris.

There were a total of 31 aircraft center penetrations made by the 53rd WRS. In addition, there was one synoptic surveillance mission flown on 2-3 August by the NOAA Aircraft Operations Center Gulfstream-IV jet aircraft around the periphery of Chris. The estimated peak intensity for Chris of 55 kt on 2 August is based on an 850 mb flight-level wind of 67 kt, corresponding to about 54 kt at the surface. The minimum central pressure of 1001 mb is based on a dropsonde pressure of 1002 mb that was accompanied by a 15-kt surface wind, which indicates that the dropsonde probably did not sample the center of the cyclone and its lowest pressure.

There were no ship reports of winds of tropical storm force associated with Chris. Selected surface observations from land stations are given in Table 3.

c. Casualty and Damage Statistics

Direct effects from Chris were mainly confined to brief periods of heavy rainfall and some localized floods. News reports indicate rainfall from the storm caused the Fajardo River in Puerto Rico to overflow its banks, and the flood waters temporarily closed a highway in the northeastern portion of the island. Rainfall reached up to 2 in across portions of Hispaniola, the Turks and Caicos, the Bahamas, and eastern Cuba. In some of the mountainous areas of Hispaniola, there were unofficial reports of near 4 in of rain. Although the center of Chris passed about 100 n mi to the north of Dominican Republic, the cyclone still caused heavy rainfall and significant floods in Santo Domingo. The floods left several people temporarily homeless due to water entering their homes, and many roads were impassable near the capital city due to the

combined effects of high water and mud slides. Flood waters also covered rice fields in the northeastern portion of the country. Overall, damage was minor and there were no casualties reported in association with Chris.

News reports indicate that there were indirect economic effects associated with the Chris official forecasts. Beginning on 2 August, NHC official forecasts projected Chris to move across the southeastern and central Gulf of Mexico as a category 1 hurricane. In response to these forecasts, these price for crude oil rose on the New York Mercantile Exchange at branch offices in London. Natural gas prices also rose considerably in New York Mercantile Exchange electronic trading that same day. Anticipation of a threat to supply by a potential Hurricane Chris coupled with high demand during an ongoing heat wave were cited as factors in the price move.

d. Forecast and Warning Critique

The genesis of Chris was forecast quite well. Atlantic Tropical Weather Outlooks (TWOAT) from the National Hurricane Center began describing the area of disturbed weather from which Chris originated more than 4 days prior to when tropical cyclogenesis occurred. Possible formation of a tropical depression was explicitly mentioned at 0221 UTC 28 July, resulting in a lead time of more than 79 h.

A verification of official and guidance model track forecasts is given in Table 4. Average official track (OFCL) errors for Chris were 27, 48, 63, 88, and 164 n mi for the 12, 24, 36, 48, and 72 h forecasts, respectively. The number of forecasts ranged from eleven at 12 h to only one at 72 h. These errors are lower than the average long-term official track errors (Table 4) at all times. The track forecasts showed little cross-track bias and correctly anticipated Chris' future path remaining north of the Caribbean island chain. The only models that significantly outperformed OFCL was the interpolated Navy NOGAPS (NGPI) and the 4-member GUNA consensus model.

Average official intensity errors (Table 5) for Chris were 8, 18, 19, 20, and 5 kt for the 12, 24, 36, 48, and 72 h forecasts, respectively. For comparison, the average long-term official intensity errors are 6.3, 9.8, 12.1, 14.8, 18.4, and 19.8 kt (Table 5). The negative effects of vertical wind shear were anticipated from the outset and intensity forecasts were held lower than most of the available statistical and climatological models. However, the longer duration of the wind shear conditions and the effects of mid-level dry entrainment were not expected. This resulted in actual intensities being much lower than forecast, including prognoses of hurricane strength at forecast time periods when in actuality Chris no longer existed as a tropical cyclone. Overall, the OFCL intensity forecasts showed no skill and were beaten by nearly every model, including the 'zero-skill' SHIFOR model.

Watches and warnings issued for Chris are listed in Table 2.

Acknowledgements:

Some of the data for this report was supplied by the NOAA National Weather Service Forecast Office (WFO) in San Juan, Puerto Rico. News reports were obtained from Bloomberg.com, FinancialNews.com, Univision Television--Puerto Rico, and ZeeNews.com.

			Ē.			
Date/Time	Latitude	Longitude	Pressure	Wind Speed	Stage	
(UTC)	(°N)	(°W)	(mb)	(kt)	Stage	
01 / 0000	16.3	58.1	1011	30	tropical depression	
01 / 0600	16.8	58.9	1009	35	tropical storm	
01 / 1200	17.2	59.8	1006	40	"	
01 / 1800	17.7	60.6	1004	50	"	
02 / 0000	18.1	61.4	1003	50	"	
02 / 0600	18.5	62.2	1001	55	"	
02 / 1200	19.0	63.0	1001	55	"	
02 / 1800	19.6	63.9	1004	50	"	
03 / 0000	19.9	64.8	1007	50	"	
03 / 0600	20.2	65.8	1010	40	"	
03 / 1200	20.4	66.8	1011	35	"	
03 / 1800	20.6	67.7	1011	30	tropical depression	
04 / 0000	20.7	68.7	1011	30		
04 / 0600	20.8	70.2	1011	25	low	
04 / 1200	21.2	71.1	1011	25	"	
04 / 1800	21.3	72.2	1012	25	"	
05 / 0000	21.5	73.4	1012	25	"	
05 / 0600	21.6	75.0	1012	20	"	
05 / 1200	21.8	76.3	1012	20	"	
05 / 1800	22.1	77.6	1012	20	"	
06 / 0000	22.4	78.9	1012	20	"	
06 / 0600	22.8	80.2	1013	20	"	
06 / 1200	23.2	81.7	1013	15	"	
06 / 1800					dissipated	
02 / 0600	18.5	62.2	1001	55	minimum pressure	

Table 1.Best track for Tropical Storm Chris, 1-4 August 2006.

Date/Time (UTC)	Action	Location			
1 / 0300	Tropical Storm Watch issued	Saba, St. Barthelemy, St. Eustatius, St. Maarten, St. Martin			
1 / 0900	Tropical Storm Watch issued	Puerto Rico, U.S. Virgin Islands, British Virgin Islands			
1 / 0900	Tropical Storm Watch Changed to Tropical Storm Warning	Saba, St. Barthelemy, St. Eustatius, St. Maarten, St. Martin			
1 / 0900	Tropical Storm Warning Issued	Anguilla, Antigua, Barbuda, Nevis, St. Kitts			
1 / 2100	Tropical Storm Watch changed to Tropical Storm Warning	Puerto Rico, U.S. Virgin Islands, British Virgin Islands			
2 / 0600	Tropical Storm Warning discontinued	Saba, St. Eustatius			
2 / 0900	Tropical Storm Warning discontinued	Antigua, Barbuda, Nevis, St. Kitts			
2 / 1500	Tropical Storm Warning discontinued	Barthelemy, St. Maarten, St. Martin			
2 / 1500	Hurricane Watch issued	Turks and Caicos Islands, and Southeastern Bahamasincluding Acklins, Crooked Island, Inaguas, Mayaguana, and Ragged Islands			
2 / 1800	Tropical Storm Warning discontinued	Anguilla			
3 / 0300	Tropical Storm Watch issued	Haiti/DR Border east to Cabo Engano of Hispaniola			
3 / 0900	Hurricane Watch downgraded to Tropical Storm Watch	Turks and Caicos Islands, and Southeastern Bahamasincluding Acklins, Crooked Island, Inaguas, Mayaguana, and Ragged Islands			
3 / 0900	Tropical Storm Warning discontinued	Puerto Rico, U.S. Virgin Islands, British Virgin Islands			
3 / 1500	Tropical Storm Watch discontinued	Cabo Francis Viejo west to Haiti/DR Border of Hispaniola			
3 / 1500	Tropical Storm Watch in effect	Cabo Francis Viejo to Cabo Engano of Hispaniola			

Table 2.Watch and warning summary for Tropical Storm Chris, 1-4 August 2006.

4 / 0000	Tropical Storm Watch discontinued	Cabo Francis Viejo west to Haiti/DR
		Border, Cabo Samana east to Cabo
		Engano of Hispaniola
4 / 0000	Tropical Storm Watch modified	Haiti/DR Border east to Samana of
		Hispaniola
4 / 0300	Tropical Storm Watch upgraded to	Turks and Caicos Islands, and
	Tropical Storm Warning	Southeastern Bahamasincluding
		Acklins, Crooked Island, Inaguas,
		Mayaguana, and Ragged Islands
4 / 0300	Tropical Storm Watch issued	La Mole St. Nicolas east to Haiti/DR
		border of Hispaniola
4 / 0300	Tropical Storm Watch issued	Long Island and Exumas in Central
		Bahamas
4 / 1200	Tropical Storm Watch discontinued	La Mole St. Nicolas, Haiti eastward to
		Cabo Samana, DR of Hispaniola
4 / 2100	Tropical Storm Warning discontinued	Turks and Caicos Islands, and all of
		Southeastern Bahamas
5 / 0300	Tropical Storm Watch discontinued	Central Bahamas

	Minimum Sea Level Pressure		Maximum Surface Wind Speed			G.	G.	T (1
Location	Date/ time (UTC)	Press. (mb)	Date/ time (UTC) ^a	Sustained (kt) ^b	Gust (kt)	surge (ft) ^c	tide (ft) ^d	rain (in)
Bahamas								
Grand Turk	04/1000	1012.5	04/1500	30				
Puerto Rico								
Cayey Lago Caritte USGS								2.39
Ceiba (TJNR) ASOS	03/0854	1015.2						1.05
Fajardo USGS								3.09
Jayuya USGS								1.37
Las Piedras USGS								3.08
San Juan (TJSJ) ASOS	03/0659	1014.6						0.53
San Juan Isla Grande USGS								2.93
U.S. Virgin Islands								
St. Croix (TISX) ASOS	02/2100	1015.9						0.16
St. John –Bethany (USGS)								0.00
St. Thomas (TIST) ASOS	03/0854	1014.6	02/2218	24	29			2.26

Selected surface observations for Tropical Storm Chris, 1-4 August 2006. Table 3.

^a Date/time is for sustained wind when both sustained and gust are listed.
^b Except as noted, sustained wind averaging periods for C-MAN and land-based ASOS reports are 2 min; buoy averaging periods are 8 min.
^c Storm surge is water height above normal astronomical tide level.
^d Storm tide is water height above National Geodetic Vertical Datum (1929 mean sea level).

Verification incl	udes the dep	pression sta	ge.					
Forecast	Forecast Period (h)							
Technique	12	24	36	48	72	96	120	
CLP5	26 (11)	47 (9)	72 (7)	90 (5)	204 (1)			
GFNI	24 (7)	32 (5)	38 (3)	42 (1)				
GFDI	35 (10)	66 (8)	87 (6)	98 (4)				
GFSI	35 (11)	57 (9)	70(7)	74 (5)	228 (1)			
AEMI	32 (11)	58 (9)	66 (7)	68 (5)				
NGPI	24 (8)	44 (6)	57 (4)	61 (2)				
UKMI	30 (4)	75 (2)						
A98E	26 (11)	41 (9)	61 (7)	100 (5)	258 (1)			
A9UK	31 (6)	53 (5)	76 (4)	103 (3)	245 (1)			
BAMD	50 (11)	93 (9)	133 (7)	174 (5)	298 (1)			
BAMM	33 (11)	56 (9)	75 (7)	79 (5)	119 (1)			
BAMS	26 (11)	48 (9)	64 (7)	72 (5)	120 (1)			
CONU	27 (11)	43 (9)	60 (7)	64 (5)				
GUNA	15 (4)	33 (2)						
OFCL	27 (11)	48 (9)	63 (7)	88 (5)	164 (1)			
NHC Official (2001-2005 mean)	37 (1930)	65 (1743)	91 (1569)	118 (1410)	171 (1138)	231 (913)	303 (742)	

Table 4.Preliminary forecast evaluation (heterogeneous sample) for Tropical StormChris, 1-4 August 2006.Forecast errors (n mi) are followed by the number of forecasts inparentheses.Errors smaller than the NHC official forecast are shown in bold-face type.Verification includes the depression stage.

Table 5.Preliminary intensity forecast evaluation (heterogeneous sample) for Tropical
Storm Chris, 1-4 August 2006. Forecast errors (kt) are followed by the number of
forecasts in parentheses. Errors smaller than the NHC official forecast are shown
in bold-face type. Verification includes the depression stage.

Forecast Technique	Forecast Period (h)								
	12	24	36	48	72	96	120		
SHF5	8.5 (11)	15.4 (9)	16.6 (7)	19.8 (5)	25.0 (1)				
GFDI	11.1 (10)	15.0 (8)	17.3 (6)	10.5 (4)					
SHIP	8.5 (11)	16.2 (9)	16.6 (7)	17.6 (5)	14.0 (1)				
DSHP	8.5 (11)	16.2 (9)	16.6 (7)	18.2 (5)	4.0 (1)				
FSSE	9.9 (10)	16.8 (8)	18.8 (6)	18.5 (4)					
ICON	9.5 (10)	15.6 (8)	16.8 (6)	13.5 (4)					
OFCL	8.2 (11)	17.8 (9)	19.3 (7)	20.0 (5)	5.0(1)				
NHC Official (2001-2005 mean)	6.3 (1930)	9.8 (1743)	12.1 (1569)	14.3 (1410)	18.4 (1138)	19.8 (913)	21.8 (742)		

Figure 1. Best track positions for Tropical Storm Chris, 1-4 August 2006.

Figure 2. Selected wind observations and best track maximum sustained surface wind speed curve for Tropical Storm Chris, 1-4 August 2006.

Figure 3. Selected pressure observations and best track minimum central pressure curve for Tropical Storm Chris, 1-4 August 2006.

Figure 4. Microwave imagery from 1225 UTC 2 Aug 2006 SSMI (left) and 1722 UTC 2 AUG 2006 AMSR-E (right) overpasses showing the structure of Chris in 85GHZ data (top panels). The left panels show Chris near its peak intensity of 55 kt with a weak mid-level eye feature forming. The lower panels show mid-level dry air (blue and green shades) wrapping around the northern semicircle and intruding into the southwestern quadrant toward the ceneter. (images from the U.S. Navy Research Laboratory, Monterey, CA).