NATIONAL HURRICANE CENTER FORECAST VERIFICATION REPORT

NEATHER SER

MENT OF

NOAA

2018 HURRICANE SEASON

John P. Cangialosi National Hurricane Center

12 June 2019

2018 HURRICANE SEASON TRACK MAP OF THE ATLANTIC BASIN (LEFT) AND THE EASTERN NORTH PACIFIC BASIN (RIGHT).

ABSTRACT

The 2018 Atlantic hurricane season had above-normal activity, with 390 official forecasts issued. The mean NHC official track forecast errors in the Atlantic basin were close to the previous 5-yr means at most forecast times. Although no records for track accuracy were set in 2018, track forecast skill was near or at all-time highs. However, the track forecasts were slightly beaten by the consensus models at some time periods. EMXI was the best-performing individual model overall. GFSI, AEMI, and HWFI were strong performers at the shorter lead times, and EGRI was the second best model at longer lead times. CMCI, NVGI, and HMNI performed less well. The Government Performance and Results Act of 1993 (GPRA) track goal was met.

Mean official intensity errors for the Atlantic basin in 2018 were lower than the 5-yr means at most forecast times. Decay-SHIFOR errors in 2018 were close to their 5-yr means in the short term, but were also lower than their 5-yr means at the longer forecast times. The official forecasts were quite skillful, but were slightly beaten by some of the consensus aids. Records for intensity accuracy were set at 36 and 48 h in 2018. Among the guidance, FSSE, IVCN, and HCCA were the best performers. HWFI was the best individual model in the short term, and GFSI was the best

individual model at the longer lead times. LGEM, HMNI, and DSHP were fair performers while EMXI lagged behind. The GPRA intensity goal was met.

There were 450 official forecasts issued in the eastern North Pacific basin in 2018, although only 161 of these verified at 120 h. This level of forecast activity was above average and the highest number of forecasts since 1992. No records for track accuracy were set in this basin in 2018. The official track forecasts were very skillful, but they were outperformed by TVCE and occasionally by HCCA and FSSE. EMXI was the best individual model in the short term, and AEMI, GFSI, and HMNI had similar or slightly more skill than EMXI at the longer lead times.

For intensity, the official forecast errors in the eastern North Pacific basin were higher than the 5-yr means at all forecast times, but Decay-SHIFOR errors were significantly higher than their 5-yr means, indicating that the season's storms were more difficult than average to predict. No records for intensity accuracy were set. The official forecasts were more skillful than the models at 12 and 120 h, but were slightly beaten by HCCA at some of the other forecast times. IVCN and HWFI were the next best models, followed by HMNI. DSHP, LGEM, and GFSI were fair performers, while EMXI was less skillful.

An evaluation of track performance during the 2016-18 period in the Atlantic basin indicates that HCCA, FSSE, and TVCA were the best models, and EMXI was competitive with those models from 72 to 120 h. The official track forecasts for the 3-yr sample had skill quite close to the best aids throughout the forecast period. For intensity in the Atlantic basin, the official track forecasts performed well, but were beaten by FSSE, HCCA, and IVCN at several time periods. HWFI was the best individual model at all forecast times for this sample.

A three-year evaluation from 2016-18 in the eastern North Pacific indicates that the official track forecasts were very skillful, and had skill levels close to the consensus models. Regarding intensity, the official forecasts during the 3-yr sample performed as good as or better than the consensus models in that basin.

Quantitative probabilistic forecasts of tropical cyclogenesis are expressed in 48 and 120 h time frames in 10% increments and in terms of categories ("low", "medium", or "high"). In the Atlantic basin, results from 2018 indicate that the 48-h and 120-h probabilistic forecasts had a low bias (under-forecast) at most probabilities. In the eastern North Pacific basin, the 48-h probabilistic forecasts were well calibrated at both the high and low probabilities, but there was a notable low bias at the medium probabilities. A low bias was present at most 120-h probabilities.

TABLE OF CONTENTS

1.	Introduction	4
2.	Atlantic Basin	7
	a. 2018 season overview – Track b. 2018 season overview – Intensity c. Verifications for individual storms	7 9 10
3.	Eastern North Pacific Basin	10
	a. 2018 season overview – Track b. 2018 season overview – Intensity c. Verifications for individual storms	10 11 12
4.	Genesis Forecasts	12
5.	Looking Ahead to 2019	13
	a. Track Forecast Cone Sizes b. Consensus Models	13 13
6.	References	14
Lis	t of Tables	15
Lis	t of Figures	47

1. Introduction

For all operationally designated tropical or subtropical cyclones, or systems that could become tropical or subtropical cyclones and affect land within the next 48 h in the Atlantic and eastern North Pacific basins (designated as "potential tropical cyclones"), the National Hurricane Center (NHC) issues an official forecast of the cyclone's center location and maximum 1-min surface wind speed. Forecasts are issued every 6 h, and contain projections valid 12, 24, 36, 48, 72, 96, and 120 h after the forecast's nominal initial time (0000, 0600, 1200, or 1800 UTC)¹. At the conclusion of the season, forecasts are evaluated by comparing the projected positions and intensities to the corresponding post-storm derived "best track" positions and intensities for each cyclone. A forecast is included in the verification only if the system is classified in the final best track as a tropical (or subtropical²) cyclone at both the forecast's initial time and at the projection's valid time. All other stages of development (e.g., tropical wave, [remnant] low, extratropical) are excluded³. For verification purposes, forecasts associated with special advisories do not supersede the original forecast issued for that synoptic time; rather, the original forecast is retained⁴. All verifications in this report include the depression stage.

It is important to distinguish between *forecast error* and *forecast skill*. Track forecast error, for example, is defined as the great-circle distance between a cyclone's forecast position and the best track position at the forecast verification time. Skill, on the other hand, represents a normalization of this forecast error against some standard or baseline. Expressed as a percentage improvement over the baseline, the skill of a forecast s_f is given by

$$s_f(\%) = 100 * (e_b - e_f) / e_b$$

where e_b is the error of the baseline model and e_f is the error of the forecast being evaluated. It is seen that skill is positive when the forecast error is smaller than the error from the baseline.

To assess the degree of skill in a set of track forecasts, the track forecast error can be compared with the error from CLIPER5, a climatology and persistence model that contains no information about the current state of the atmosphere (Neumann 1972, Aberson 1998)⁵. Errors from the CLIPER5 model are taken to represent a "no-skill" level of accuracy that is used as the baseline (e_b) for evaluating other forecasts⁶. If CLIPER5 errors are unusually low during a given season, for example, it indicates that the year's storms were inherently "easier" to forecast than normal or otherwise unusually well behaved. The current version of CLIPER5 is based on developmental data from 1931-2004 for the Atlantic and from 1949-2004 for the eastern Pacific.

¹ The nominal initial time represents the beginning of the forecast process. The actual advisory package is not released until 3 h after the nominal initial time, i.e., at 0300, 0900, 1500, and 2100 UTC.

² For the remainder of this report, the term "tropical cyclone" shall be understood to also include subtropical cyclones.

³ Possible classifications in the best track are: Tropical Depression, Tropical Storm, Hurricane, Subtropical Depression, Subtropical Storm, Extratropical, Disturbance, Wave, and Low.

⁴ Special advisories are issued whenever an unexpected significant change has occurred or when watches or warnings are to be issued between regularly scheduled advisories. The treatment of special advisories in forecast databases changed in 2005 to the current practice of retaining and verifying the original advisory forecast.

⁵ CLIPER5 and SHIFOR5 are 5-day versions of the original 3-day CLIPER and SHIFOR models.

⁶ To be sure, some "skill", or expertise, is required to properly initialize the CLIPER model.

Particularly useful skill standards are those that do not require operational products or inputs, and can therefore be easily applied retrospectively to historical data. CLIPER5 satisfies this condition, since it can be run using persistence predictors (e.g., the storm's current motion) that are based on either operational or best track inputs. The best-track version of CLIPER5, which yields substantially lower errors than its operational counterpart, is generally used to analyze lengthy historical records for which operational inputs are unavailable. It is more instructive (and fairer) to evaluate operational forecasts against operational skill benchmarks, and therefore the operational versions are used for the verifications discussed below.⁷

Forecast intensity error is defined as the absolute value of the difference between the forecast and best track intensity at the forecast verifying time. Skill in a set of intensity forecasts is assessed using Decay-SHIFOR5 (DSHIFOR5) as the baseline. The DSHIFOR5 forecast is obtained by initially running SHIFOR5, the climatology and persistence model for intensity that is analogous to the CLIPER5 model for track (Jarvinen and Neumann 1979, Knaff et al. 2003). The output from SHIFOR5 is then adjusted for land interaction by applying the decay rate of DeMaria et al. (2006). The application of the decay component requires a forecast track, which here is given by CLIPER5. The use of DSHIFOR5 as the intensity skill benchmark was introduced in 2006. On average, DSHIFOR5 errors are about 5-15% lower than SHIFOR5 in the Atlantic basin from 12-72 h, and about the same as SHIFOR5 at 96 and 120 h.

It has been argued that CLIPER5 and DSHIFOR5 should not be used for skill benchmarks, primarily on the grounds that they were not good measures of forecast difficulty. Particularly in the context of evaluating forecaster performance, it was recommended that a model consensus (see discussion below) be used as the baseline. However, an unpublished study by NHC has shown that on the seasonal time scales at least, CLIPER5 and DSHIFOR5 are indeed good predictors of official forecast error. For the period 1990-2009 CLIPER5 errors explained 67% of the variance in annual-average NHC official track forecast errors at 24 h. At 72 h the explained variance was 40% and at 120 h the explained variance was 23%. For intensity the relationship was even stronger: DSHIFOR5 explained between 50 and 69% of the variance in annual-average NHC official errors at all time periods. Given this, CLIPER5 and DSHIFOR5 appear to remain suitable, if imperfect, baselines for skill, in the context of examining forecast performance over the course of a season (or longer). However, they're probably less useful for interpreting forecast performance with smaller samples (e.g., for a single storm).

The trajectory-CLIPER (TCLP) model is an alternative to the CLIPER and SHIFOR models for providing baseline track and intensity forecasts (DeMaria, personal communication). The input to TCLP [Julian Day, initial latitude, longitude, maximum wind, and the time tendencies of position and intensity] is the same as for CLIPER/SHIFOR, but rather than using linear regression to predict the future latitude, longitude and maximum wind, a trajectory approach is used. For track, a monthly climatology of observed storm motion vectors was developed from a 1982-2011 sample. The TCLP storm track is determined from a trajectory of the climatological motion vectors starting at the initial date and position of the storm. The climatological motion vector is modified

⁷ On very rare occasions, operational CLIPER or SHIFOR runs are missing from forecast databases. To ensure a completely homogeneous verification, post-season retrospective runs of the skill benchmarks are made using operational inputs. Furthermore, if a forecaster makes multiple estimates of the storm's initial motion, location, etc., over the course of a forecast cycle, then these retrospective skill benchmarks may differ slightly from the operational CLIPER/SHIFOR runs that appear in the forecast database.

by the current storm motion vector, where the influence of the current motion vector decreases with time during the forecast. A similar approach is taken for intensity, except that the intensity tendency is estimated from the logistic growth equation model (LGEM) with climatological input. Similar to track, the climatological intensity tendency is modified by the observed tendency, where the influence decreases with forecast time. The track used for the TCLP intensity forecast is the TCLP track forecast. When the storm track crosses land, the intensity is decreased at a climatological decay rate. A comparison of a 10-yr sample of TCLP errors with those from CLIPER5 and DSHIFOR5 shows that the average track and intensity errors of the two baselines are within 10% of each other at all forecast times out to five days for the Atlantic and eastern North Pacific. One advantage of TCLP over CLIPER5/DSHIFOR5 is that TCLP can be run to any desired forecast time.

NHC also issues forecasts of the size of tropical cyclones; these "wind radii" forecasts are estimates of the maximum extent of winds of various thresholds (34, 50, and 64 kt) expected in each of four quadrants surrounding the cyclone. Unfortunately, there is insufficient surface wind information to allow the forecaster to accurately analyze the size of a tropical cyclone's wind field. As a result, post-storm best track wind radii are likely to have errors so large as to render a verification of official radii forecasts unreliable and potentially misleading; consequently, no verifications of NHC wind radii are included in this report. In time, as our ability to measure the surface wind field in tropical cyclones improves, it may be possible to perform a meaningful verification of NHC wind radii forecasts.

Numerous objective forecast aids (guidance models) are available to help the NHC in the preparation of official track and intensity forecasts. Guidance models are characterized as either *early* or *late*, depending on whether or not they are available to the forecaster during the forecast cycle. For example, consider the 1200 UTC (12Z) forecast cycle, which begins with the 12Z synoptic time and ends with the release of an official forecast at 15Z. The 12Z run of the National Weather Service/Global Forecast System (GFS) model is not complete and available to the forecaster until about 16Z, or about an hour after the NHC forecast is released. Consequently, the 12Z GFS would be considered a late model since it could not be used to prepare the 12Z official forecast. This report focuses on the verification of early models.

Multi-layer dynamical models are generally, if not always, late models. Fortunately, a technique exists to take the most recent available run of a late model and adjust its forecast to apply to the current synoptic time and initial conditions. In the example above, forecast data for hours 6-126 from the previous (06Z) run of the GFS would be smoothed and then adjusted, or shifted, such that the 6-h forecast (valid at 12Z) would match the observed 12Z position and intensity of the tropical cyclone. The adjustment process creates an "early" version of the GFS model for the 12Z forecast cycle that is based on the most current available guidance. The adjusted versions of the late models are known, mostly for historical reasons, as *interpolated* models⁸. The adjustment algorithm is invoked as long as the most recent available late model is not more than 12 h old, e.g., a 00Z late model could be used to form an interpolated model for

⁸ When the technique to create an early model from a late model was first developed, forecast output from the late models was available only at 12 h (or longer) intervals. In order to shift the late model's forecasts forward by 6 hours, it was necessary to first interpolate between the 12 h forecast values of the late model – hence the designation "interpolated".

the subsequent 06Z or 12Z forecast cycles, but not for the subsequent 18Z cycle. Verification procedures here make no distinction between 6 and 12 h interpolated models.⁹

A list of models is given in Table 1. In addition to their timeliness, models are characterized by their complexity or structure; this information is contained in the table for reference. Briefly, dynamical models forecast by solving the physical equations governing motions in the atmosphere. Dynamical models may treat the atmosphere either as a single layer (twodimensional) or as having multiple layers (three-dimensional), and their domains may cover the entire globe or be limited to specific regions. The interpolated versions of dynamical model track and intensity forecasts are also sometimes referred to as dynamical models. Statistical models, in contrast, do not consider the characteristics of the current atmosphere explicitly but instead are based on historical relationships between storm behavior and various other parameters. Statistical-dynamical models are statistical in structure but use forecast parameters from dynamical models as predictors. Consensus models are not true forecast models per se, but are merely combinations of results from other models. One way to form a consensus is to simply average the results from a collection (or "ensemble") of models, but other, more complex techniques can also be used. The FSU "super-ensemble", for example, combines its individual components on the basis of past performance and attempts to correct for biases in those components (Williford et al. 2003). A consensus model that considers past error characteristics can be described as a "weighted" or "corrected" consensus. Additional information about the models NHC quidance used at the can be found at http://www.nhc.noaa.gov/modelsummary.shtml.

The verifications described in this report are for all tropical cyclones in the Atlantic and eastern North Pacific basins. Potential tropical cyclones have been excluded from this verification. These statistics are based on forecast and best track data sets taken from the Automated Tropical Cyclone Forecast (ATCF) System¹⁰ on 6 May 2019 for the Atlantic basin, and on 2 April 2019 for the eastern North Pacific basin. Verifications for the Atlantic and eastern North Pacific basins are given in Sections 2 and 3 below, respectively. Section 4 discusses NHC's probabilistic genesis forecasts. Section 5 summarizes the key findings of the 2018 verification and previews anticipated changes for 2019.

2. Atlantic Basin

a. 2018 season overview – Track

Figure 1 and Table 2 present the results of the NHC official track forecast verification for the 2018 season, along with results averaged for the previous 5-yr period, 2013-2017. In 2018, the NHC issued 390 Atlantic basin tropical cyclone forecasts¹¹, a number well above the long-term average of 322 (Fig. 2). Mean track errors ranged from 24 n mi at 12 h to 186 n mi at 120

⁹ The UKM and EMX models are only available through 120 h twice a day (at 0000 and 1200 UTC). Consequently, roughly half the interpolated forecasts from these models are 12 h old.

¹⁰ In ATCF lingo, these are known as the "a decks" and "b decks", respectively.

¹¹ This count does not include forecasts issued for systems later classified to have been something other than a tropical cyclone at the forecast time.

h. The mean official track forecast errors in 2018 were slightly smaller than the previous 5-yr means from 24 to 48 h, but similar to or slightly larger than the means at the other forecast periods. The CLIPER errors for 2018 were larger than average, and significantly larger from 72 to 120 h, indicating that the season's storms were more challenging to forecast than normal. No records for track accuracy were set in 2018. The official track forecast vector biases were westward or west-northwestward (i.e., the official forecast tended to fall to the west or west-northwest of the verifying position) at most forecast periods. Track forecast skill ranged from 49% at 12 h to 76% at 48 h (Table 2). The track errors in 2018 increased from the record low errors set in 2017, however, over the past 25 to 30 years, the 24–72-h track forecast errors have been reduced by 70 to 75% (Fig. 3). Track forecast error reductions of about 60% have occurred over the past 15 years or so for the 96- and 120-h forecast periods. Although the track errors increased slightly in 2018, an evaluation of track skill indicates that the skill levels are at or near all-time highs for all forecast periods (Fig. 3). Figure 4 indicates that on average the NHC track errors are lower between 24 and 72 h for initially stronger cyclones (e.g., better for hurricanes than for tropical depressions and tropical storms), but that relationship breaks down after 72 h.

Note that the mean official error in Fig. 1 is not precisely zero at 0 h (the analysis time). This non-zero difference between the operational analysis of storm location and best track location, however, is not properly interpreted as "analysis error". The best track is a subjectively smoothed representation of the storm history over its lifetime, in which the short-term variations in position or intensity that cannot be resolved in a 6-hourly time series are deliberately removed. Thus the location of a strong hurricane with a well-defined eye might be known with great accuracy at 1200 UTC, but the best track may indicate a location elsewhere by 5-10 miles or more if the precise location of the cyclone at 1200 UTC was unrepresentative. Operational analyses tend to follow the observed position of the storm more closely than the best track analyses, since it is more difficult to determine unrepresentative behavior in real time. Consequently, the t=0 "errors" shown in Fig. 1 contain both true analysis error and representativeness error.

Table 3a presents a homogeneous¹² verification for the official forecast along with a selection of early models for 2018. In order to maximize the sample size, a guidance model had to be available at least two-thirds of the time at both 48 and 120 h to be included in this comparison. The performance of the official forecast and the early track models in terms of skill are presented in Fig. 5. The figure shows that the official forecasts were highly skillful, and they were only slightly bested at some forecast times by the consensus models HCCA, FSSE, and TVCA. Among the individual models, EMXI was the best-performing aid, and it had similar skill levels to the official forecasts and the consensus aids from 72 to 120 h. GFSI, AEMI, and HWFI were strong performers early, however, their skill levels trailed for the longer lead times. Conversely, EGRI was less skillful early, but it was the second best individual model at 96 and 120 h. CMCI, NVGI, and HMNI were less skillful. In fact, HMNI and NVGI were outperformed by the simple TABM and TABS models at 96 and 120 h. An evaluation over the three years 2016-18 (Fig. 6) indicates that HCCA, FSSE, and TVCA were the best models, and they performed close to one another throughout the forecast period. EMXI had less skill early, but it was competitive with the consensus models from 48 to 120 h. The official forecast had skill that was

¹² Verifications comparing different forecast models are referred to as *homogeneous* if each model is verified over an identical set of forecast cycles. Only homogeneous model comparisons are presented in this report.

quite close to the best aids throughout the forecast period. EGRI, GFSI, AEMI, and HWFI were fair performers and made up the next best models. CMCI and NVGI performed less well.

Vector biases of the guidance models for 2018 are given in Table 3b. The table shows that the official forecast had similar biases to the consensus aids. Much of the guidance, like the official forecast, had a west or northwest bias at most forecast time periods.

A separate homogeneous verification of the primary consensus models for 2018 is shown in Fig. 7. The figure shows that the skill of HCCA, FSSE, TVCA, TVDG, TVCX were similar to one another. GFEX was not quite as good, as it had skill values a few percent lower than the best consensus models for the shorter lead times. UEMI and AEMI had 5 to 10% less skill than the best models at most forecast periods.

Atlantic basin 48-h official track error, evaluated for all tropical cyclones, is a forecast measure tracked under the Government Performance and Results Act of 1993 (GPRA). In 2018, the GPRA goal was 65 n mi and the verification for this measure was 60.1 n mi.

b. 2018 season overview – Intensity

Figure 8 and Table 4 present the results of the NHC official intensity forecast verification for the 2018 season, along with results averaged for the preceding 5-yr period. Mean forecast errors in 2018 ranged from 5 kt at 12 h to 13 kt at 72 and 96 h. These errors were slightly lower than the 5-yr means at most forecast times, and well below the mean at 120 h. Records for accuracy were set at 36 and 48 h in 2018. The official forecasts had very little bias through 72 h, but a slight low bias (under-forecast) at 96 and 120 h. Decay-SHIFOR5 errors were close to its 5-yr means from 12 to 72 h, but they were slightly lower than its mean at 96 and 120 h, implying that season's storms were a little easier to predict than normal. Figure 9 indicates that the NHC official errors decreased from the 2017 values at most forecast times, and despite year-to-year variability, there has been a notable decrease in error that began at the start of the decade. Over the long term, the intensity predictions are gradually improving as the forecasts are generally more skillful in the current decade than they were in the previous one.

Table 5a presents a homogeneous verification for the official forecasts and the primary early intensity models for 2018. Intensity biases are given in Table 5b, and forecast skill is presented in Fig. 10. The official forecasts were quite skillful, but they were beaten by IVCN from 24 to 72 h, and occasionally by FSSE and HCCA. Among the individual models, HWFI was the best-performing model through 48 h, and GFSI was the best model from 72 to 120 h. HMNI was a fair performer, but it had less skill than GFSI at all forecast times. DSHP and LGEM were skillful throughout the forecast period, but they had less skill than most of the dynamical models. EMXI was not competitive for this sample. An inspection of the intensity biases (Table 5b) indicates that the majority of the models had little bias in 2018. The exceptions were HMNI and EMXI, which had notable low biases from 72 to 120 h.

An evaluation over the three years 2016-18 (Fig. 11) indicates that the official forecasts have been consistently performing quite well, but they were outperformed by IVCN and HCCA from 36 to 96 h, and by FSSE from 24 to 72 h. For this sample, HWFI was the best individual model at all forecast times, followed by LGEM, GFSI, and DSHP.

The 48-h official intensity error, evaluated for all tropical cyclones, is another GPRA measure for the NHC. In 2018, the GPRA goal was 12 kt and the verification for this measure was 10.2 kt.

c. Verifications for individual storms

Forecast verifications for individual storms are given in Table 6. Of note are the large track errors for Hurricane Helene at most forecast lead times. The NHC forecasts and many of the models had a large slow and left-of-track bias for Helene. It appears that a trough in the central Atlantic was stronger than expected, which resulted in a faster and more eastward track of Helene than predicted. Conversely, the official track forecast errors were quite low for some of the tropical cyclones that affected the United States in 2018, including Hurricanes Florence and Michael and Tropical Storm Gordon. Figure 12 shows an illustration of the official track errors stratified by storm.

With regards to intensity, Hurricane Isaac was one of the more challenging cyclones to predict in 2018. The official intensity forecast errors were higher than the 5-yr averages at all forecast times, and much higher than the mean from 72 to 120 h. The NHC intensity forecasts suffered from a pronounced high bias and generally missed the sudden halt to Isaac's intensification, as well as its subsequent gradual weakening. Figure 13 shows an illustration of the official intensity errors stratified by storm. Additional discussion on forecast performance for individual storms can be found in NHC Tropical Cyclone Reports available at http://www.nhc.noaa.gov/data/tcr/index.php?season=2018&basin=atl

3. Eastern North Pacific Basin

a. 2018 season overview – Track

The NHC track forecast verification for the 2018 season in the eastern North Pacific, along with results averaged for the previous 5-yr period is presented in Figure 14 and Table 7. There were 450 forecasts issued for the eastern Pacific basin in 2018, which was the highest number of forecasts in this basin since 1992 (Fig. 15). However, only 161 of these forecasts verified at 120 h due to the short lifecycle of some of the tropical cyclones. Mean track errors ranged from 21 n mi at 12 h to 103 n mi at 120 h. These errors were lower than the 5-yr means at all forecast times and substantially lower, by 30%, at 120 h. The CLIPER errors were slightly lower than their respective 5-yr means at 12 and 24 h. However, the CLIPER errors were notably larger than the means from 48 to 120 h, implying that the season's storms were more challenging to forecast than average at the longer lead times, which makes the low official track forecasts errors at the long lead times quite impressive. No records for accuracy were set in this basin in 2018, however. The official track forecast vector biases were small through 72 h, but a more notable north-northeastward bias existed at 96 and 120 h.

Figure 16 shows recent trends in track forecast accuracy and skill for the eastern North Pacific. Errors have been reduced by about 70% for the 24 to 72 h forecasts since 1990, though there has been little change in the errors during the past few years. At the 96 and 120 h forecast

times, errors have dropped by about 60% since 2001. Forecast skill in 2018 increased at all forecast times from the 2017 values, and skill levels are at all-time highs from 48 through 120 h.

Table 8a presents a homogeneous verification for the official forecast and the early track models for 2018, with vector biases of the guidance models given in Table 8b. Skill comparisons of selected models are shown in Fig. 17. The official forecasts were very skillful and were near the best models, the consensus aids. TVCE was the best aid, and the only model that consistently beat the official forecasts. HCCA was the next best model, also beating the official forecasts from 12 to 72 h. FSSE was competitive with TVCE and HCCA early, edging out the official forecasts at 12 and 24 h, but its performance trailed the official forecasts and the best aids at forecast times beyond that. EMXI was the best individual model in the short term, but that model had similar errors to GFSI, AEMI, and HMNI from 48 to 120 h. In fact, HMNI was the best individual model at 72 h and beyond. HWFI was a fair performer, but it had slightly less skill than GFSI, AEMI, and HMNI throughout the forecast period. EGRI, NVGI, and CMCI trailed in 2018, and these models had less skill than the simple TABM model beyond 36 h. An evaluation of the three years 2016-18 (Fig. 18) indicates that the official forecasts were very skillful, and they were near the performance of the consensus models. HCCA slightly bested the official forecasts in the short term and TVCE edged out the official forecasts at the longer lead times. Among the individual models, EMXI was the best performer at 12 and 24 h, but AEMI had slightly more skill from 48 to 120 h. GFSI and HWFI were close behind, but EGRI and CMCI performed less well. The official forecasts had similar biases to TVCE and HCCA. Most of the global models, including GFSI, EGRI, NVGI, and CMCI had larger track biases than the official forecasts.

A separate verification of the primary consensus aids is given in Figure 19. The skill of the consensus models was tightly clustered, but TVCE, TVCX, and GFEX were the best aids at 96 and 120 h. AEMI was less skillful (about 5 to 10% lower skill) than the highest performers, but UEMI had considerably less skill.

b. 2018 season overview – Intensity

Figure 20 and Table 9 present the results of the NHC eastern North Pacific intensity forecast verification for the 2018 season, along with results averaged for the preceding 5-yr period. Mean forecast errors were 6 kt at 12 h and increased to 19 kt at 120 h. The errors were slightly higher than the 5-yr means at most forecast times, but around 30% higher than the 5-yr means at 120 h. The Decay-SHIFOR forecast errors were significantly higher than their 5-yr means, especially at 96 and 120 h, indicating that the season's storms were more challenging than normal to predict. No records for accuracy were set in 2018. A review of error and skill trends (Fig. 21) indicates that although there is considerable year-to-year variability in intensity errors, there has been a slight decrease in error over the past couple of decades at most forecast times. Forecast skill has changed little during the last several years, however. Intensity forecast biases were slightly low (under-forecast) from 12 to 72 h, and more notably low at 96 and 120 h.

Figure 22 and Table 10a present a homogeneous verification for the primary early intensity models for 2018. Forecast biases are given in Table 10b. The official forecasts were more skillful than the majority of the guidance. In fact, the official forecasts outperformed all of the models at 12 and 120 h, but HCCA performed a little better at many of the other forecast times. FSSE was

a good performer at the short lead times, but its skill trailed after 48 h. IVCN was a strong performer, but it did not beat HCCA or the official forecast at any time period. HWFI was the best individual model at all forecast times and had skill levels close to the official forecast and the consensus aids from 72 to 120 h. HMNI was not as good as HWFI, as it had about 5 to 10% less skill than that model at most forecast times. HMNI did beat the statistical-dynamical DSHP and LGEM, which had limited skill throughout the forecast period. Although GFSI was not skillful early, it had similar skill values to DSHP and LGEM from 72 to 120 h. EMXI was less skillful. All of the models had a significant low bias, especially at the longer lead times, and no model had smaller biases than the official forecasts. An evaluation over the three years 2016-18 (Fig. 23) indicates a similar result to the 2018 sample with the official forecasts outperforming all of the guidance at 12 and 120 h and being competitive with best aids, HCCA and IVCN, at the other forecast times. HWFI was the next best model, followed by DSHP and LGEM. GFSI had little skill while EMXI was not skillful.

c. Verifications for individual storms

Forecast verifications for individual storms are given for reference in Table 11. Additional discussion on forecast performance for individual storms can be found in NHC Tropical Cyclone Reports available at <u>http://www.nhc.noaa.gov/data/tcr/index.php?season=2018&basin=epac</u>.

4. Genesis Forecasts

The NHC routinely issues Tropical Weather Outlooks (TWOs) for both the Atlantic and eastern North Pacific basins. The TWOs are text products that discuss areas of disturbed weather and their potential for tropical cyclone development. Forecasters subjectively assigned a probability of genesis (0 to 100%, in 10% increments) to each area of disturbed weather described in the TWO, where the assigned probabilities represented the forecaster's determination of the chance of tropical cyclone formation during the 48- and 120-h periods following the nominal TWO issuance time. Verification is based on NHC best-track data, with the time of genesis defined to be the first tropical cyclone point appearing in the best track.

Verifications of the 48-h outlook for the Atlantic and eastern North Pacific basins for 2018 are given in Table 12 and illustrated in Fig. 24. In the Atlantic basin, a total of 581 genesis forecasts were made. These 48-h forecasts had a low bias at most probabilities. In the eastern Pacific, a total of 804 genesis forecasts were made. The forecasts in this basin had a low bias at probabilities between 40 and 70%, but were well calibrated at the low and high ranges.

Verification of the 120-h outlook for the Atlantic and eastern North Pacific basins for 2018 are given in Table 13 and illustrated in Fig. 25. In the Atlantic basin, the 120-h forecasts also had a low bias at most probabilities. In the eastern North Pacific, a slight low bias was noted at most probabilities. The diagrams also show the refinement distribution, which indicates how often the forecasts deviated from (a perceived) climatology. Sharp peaks at climatology indicate low

forecaster confidence, while maxima at the extremes indicate high confidence; the refinement distributions shown here suggest an intermediate level of forecaster confidence.

5. Looking Ahead to 2019

a. Track Forecast Cone Sizes

The National Hurricane Center track forecast cone depicts the probable track of the center of a tropical cyclone, and is formed by enclosing the area swept out by a set of circles along the forecast track (at 12, 24, 36 h, etc.). The size of each circle is set so that two-thirds of historical official forecast errors over the most-recent 5-yr sample fall within the circle. The circle radii defining the cones in 2019 for the Atlantic and eastern North Pacific basins (based on error distributions for 2014-18) are given in Table 14. In the Atlantic basin, the cone circles will be slightly smaller (by up to 8%) at the 24-72 h forecast periods, but are unchanged at the other leads times. In the eastern Pacific basin, the cone circles will be smaller (by up to 10%) at 24 h and beyond.

b. Consensus Models

Some consensus models require all of their member models to be available in order to compute the consensus (e.g., GFEX, ICON), while others are less restrictive, requiring only two or more members to be present (e.g., TVCA, IVCN). The terms "fixed" and "variable" can be used to describe these two approaches, respectively. In a variable consensus model, it is often the case that the 120-h forecast is based on a different set of members than the 12-h forecast. While this approach greatly increases availability, it does pose consistency issues for the forecaster.

The consensus model composition for 2019 is given in Table 15. In 2019, EMNI was added to the consensus aid composition of TVCA given that in previous years EMNI would have improved the consensus model, especially at the longer range forecast times. Also for 2019, TCON (TCOA/TCOE) has been retired. An assessment of this fixed model over the past few years shows that it has not been competitive with the variable track consensus models, and therefore, it will no longer be computed.

Acknowledgments

The author gratefully acknowledges Michael Brennan, Monica Bozeman, and Craig Mattocks of NHC, managers of the NHC forecast databases.

6. References

- Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 1005-1015.
- DeMaria, M., J. A. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses, J. Appl. Meteor., 45, 491-499.
- Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts of tropical cyclone intensity for the North Atlantic basin. NOAA Tech. Memo. NWS NHC-10, 22 pp.
- Knaff, J.A., M. DeMaria, B. Sampson, and J.M. Gross, 2003: Statistical, five-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 80-92.
- Neumann, C. B., 1972: An alternate to the HURRAN (hurricane analog) tropical cyclone forecast system. NOAA Tech. Memo. NWS SR-62, 24 pp.
- Williford, C.E., T. N. Krishnamurti, R. C. Torres, S. Cocke, Z. Christidis, and T. S. V. Kumar, 2003: Real-Time Multimodel Superensemble Forecasts of Atlantic Tropical Systems of 1999. Mon. Wea. Rev., 131, 1878-1894.

List of Tables

- 1. National Hurricane Center forecasts and models.
- 2. Homogenous comparison of official and CLIPER5 track forecast errors in the Atlantic basin for the 2018 season for all tropical cyclones.
- (a) Homogenous comparison of Atlantic basin early track guidance model errors (n mi) for 2018. (b) Homogenous comparison of Atlantic basin early track guidance model bias vectors (°/n mi) for 2018.
- 4. Homogenous comparison of official and Decay-SHIFOR5 intensity forecast errors in the Atlantic basin for the 2018 season for all tropical cyclones.
- (a) Homogenous comparison of Atlantic basin early intensity guidance model errors (kt) for 2018. (b) Homogenous comparison of a selected subset of Atlantic basin early intensity guidance model errors (kt) for 2018. (c) Homogenous comparison of a selected subset of Atlantic basin early intensity guidance model biases (kt) for 2018.
- 6. Official Atlantic track and intensity forecast verifications (OFCL) for 2018 by storm.
- 7. Homogenous comparison of official and CLIPER5 track forecast errors in the eastern North Pacific basin for the 2018 season for all tropical cyclones.
- (a) Homogenous comparison of eastern North Pacific basin early track guidance model errors (n mi) for 2018. (b) Homogenous comparison of eastern North Pacific basin early track guidance model bias vectors (°/n mi) for 2018.
- 9. Homogenous comparison of official and Decay-SHIFOR5 intensity forecast errors in the eastern North Pacific basin for the 2018 season for all tropical cyclones.
- 10. (a) Homogenous comparison of eastern North Pacific basin early intensity guidance model errors (kt) for 2018. (b) Homogenous comparison of eastern North Pacific basin early intensity guidance model biases (kt) for 2018.
- 11. Official eastern North Pacific track and intensity forecast verifications (OFCL) for 2018 by storm.
- 12. Verification of 48-h probabilistic genesis forecasts for (a) the Atlantic and (b) eastern North Pacific basins for 2018.
- 13. Verification of 120-h probabilistic genesis forecasts for (a) the Atlantic and (b) eastern North Pacific basins for 2018.
- 14. NHC forecast cone circle radii (n mi) for 2019. Change from 2018 values in n mi and percent are given in parentheses.
- 15. Composition of NHC consensus models for 2019. It is intended that TCOA/TVCA would be the primary consensus aids for the Atlantic basin and TCOE/TVCE would be primary for the eastern Pacific.

Table 1. National Hurricane Center forecasts and models.

ID	Name/Description	Туре	Timeliness (E/L)	Parameters forecast
OFCL	Official NHC forecast			Trk, Int
HWRF	Hurricane Weather and Research Forecasting Model	Multi-layer regional dynamical	L	Trk, Int
HMON	Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic model	Multi-layer regional dynamical	L	Trk, Int
GFSO	NWS/Global Forecast System (formerly Aviation)	Multi-layer global dynamical	L	Trk, Int
AEMN	GFS ensemble mean	Consensus	L	Trk, Int
UKM	United Kingdom Met Office model, automated tracker	Multi-layer global dynamical	L	Trk, Int
EGRR	United Kingdom Met Office model with subjective quality control applied to the tracker	Multi-layer global dynamical	L	Trk, Int
UEMN	UKMET ensemble mean	Consensus	L	Trk, Int
NVGM	Navy Global Environmental Model	Multi-layer global dynamical	L	Trk, Int
СМС	Environment Canada global model	Multi-level global dynamical	L	Trk, Int
NAM	NWS/North American Mesoscale Forecast System	Multi-level regional dynamical	L	Trk, Int
СТХ	COAMPS-TC using GFS initial and boundary conditions	Multi-layer regional dynamical	L	Trk, Int
EMX	European Centre for Medium Range Forecasting (ECMWF) global model	Multi-layer global dynamical	L	Trk, Int

ID	Name/Description	Туре	Timeliness (E/L)	Parameters forecast
EEMN	ECMWF ensemble mean	Consensus	L	Trk
TABS	Beta and advection model (shallow layer)	Single-layer trajectory	E	Trk
TABM	Beta and advection model (medium layer)	Single-layer trajectory	E	Trk
TABD	Beta and advection model (deep layer)	Single-layer trajectory	E	Trk
CLP5	CLIPER5 (Climatology and Persistence model)	Statistical (baseline)	E	Trk
SHF5	SHIFOR5 (Climatology and Persistence model)	Statistical (baseline)	E	Int
DSF5	DSHIFOR5 (Climatology and Persistence model)	Statistical (baseline)	E	Int
OCD5	CLP5 (track) and DSF5 (intensity) models merged	Statistical (baseline)	E	Trk, Int
TCLP	Trajectory-CLIPER model	Statistical (baseline)	E	Trk, Int
SHIP	Statistical Hurricane Intensity Prediction Scheme (SHIPS)	Statistical-dynamical	E	Int
DSHP	SHIPS with inland decay	Statistical-dynamical	E	Int
OFCI	Previous cycle OFCL, adjusted	Interpolated	E	Trk, Int
HWFI	Previous cycle HWRF, adjusted	Interpolated-dynamical	E	Trk, Int
HMNI	Previous cycle HMON, adjusted	Interpolated-dynamical	E	Trk, Int
СТСІ	Previous cycle CTCX, adjusted	Interpolated-dynamical	E	Trk, Int
GFSI	Previous cycle GFS, adjusted	Interpolated-dynamical	E	Trk, Int

ID	Name/Description	Туре	Timeliness (E/L)	Parameters forecast
UKMI	Previous cycle UKM, adjusted	Interpolated-dynamical	E	Trk, Int
EGRI	Previous cycle EGRR, adjusted	Interpolated-dynamical	E	Trk, Int
NVGI	Previous cycle NVGM, adjusted	Interpolated-dynamical	E	Trk, Int
EMXI	Previous cycle EMX, adjusted	Interpolated-dynamical	E	Trk, Int
CMCI	Previous cycle CMC, adjusted	Interpolated-dynamical	E	Trk, Int
AEMI	Previous cycle AEMN, adjusted	Consensus	E	Trk, Int
UEMI	Previous cycle UEMN, adjusted	Consensus	E	Trk, Int
FSSE	FSU Super-ensemble	Corrected consensus	E	Trk, Int
GFEX	Average of GFSI and EMXI	Consensus	E	Trk
TVCN	Average of at least two of GFSI EGRI HWFI EMXI CTCI	Consensus	E	Trk
TVCA	Average of at least two of GFSI EGRI HWFI EMXI CTCI	Consensus	E	Trk
TVCE	Average of at least two of GFSI EGRI HWFI EMXI CTCI	Consensus	Е	Trk
TVCX	EMXI and average of at least two of GFSI EGRI HWFI EMXI CTCI	Consensus	E	Trk
TVDG	EMXI, GFSI, EGRI, and average of at least two of GFSI EMXI EGRI HWFI CTCI	Consensus	E	Trk
TVCC	Version of TVCN corrected for model biases	Corrected consensus	E	Trk
HCCA	Weighted average of AEMI, GFSI, CTCI, DSHP, EGRI, EMNI, EMXI,HWFI, LGEM	Corrected consensus	E	Trk, Int

ID	Name/Description	Туре	Timeliness (E/L)	Parameters forecast
ICON	Average of DSHP, LGEM, CTCI, HMNI, and HWFI	Consensus	E	Int
IVCN	Average of at least two of DSHP LGEM HWFI CTCI HMNI	Consensus	E	Int
IVDR	HWFI, CTCI, HMNI, and average of at least two of DSHP LGEM HWFI CTCI HMNI	Consensus	E	Int

.

Table 2.Homogenous comparison of official and CLIPER5 track forecast errors in the
Atlantic basin in 2018 for all tropical cyclones. Averages for the previous 5-yr
period are shown for comparison.

		Forecast Period (h)						
	12	24	36	48	72	96	120	
2018 mean OFCL error (n mi)	24.2	35.2	45.4	60.1	100.6	144.7	185.5	
2018 mean CLIPER5 error (n mi)	47.0	104.9	173.1	250.3	408.2	526.2	662.9	
2018 mean OFCL skill relative to CLIPER5 (%)	48.5	66.4	73.8	76.0	75.4	72.5	72.0	
2018 mean OFCL bias vector (°/n mi)	338/003	297/005	272/009	265/014	264/022	263/012	296/027	
2018 number of cases	354	318	286	254	202	160	127	
2013-2017 mean OFCL error (n mi)	24.1	37.4	50.5	66.7	97.5	134.3	176.7	
2013-2017 mean CLIPER5 error (n mi)	44.5	95.8	152.8	210.5	319.8	419,9	490.4	
2013-2017 mean OFCL skill relative to CLIPER5 (%)	45.8	61.0	67.0	68.3	69.5	68.0	64.0	
2013-2017 mean OFCL bias vector (°/n mi)	045/002	040/003	046/004	048/005	064/009	044/007	258/018	
2013-2017 number of cases	1141	1012	893	777	576	435	349	
2018 OFCL error relative to 2013- 2017 mean (%)	0.4	-5.9	-10.1	-9.9	3.2	7.7	5.0	
2018 CLIPER5 error relative to 2013- 2017 mean (%)	5.6	9.5	13.3	18.9	27.6	25.3	35.2	

Table 3a.Homogenous comparison of Atlantic basin early track guidance model errors (n
mi) for 2018. Errors smaller than the NHC official forecast are shown in bold-
face.

		Forecast Period (h)							
Model ID	12	24	36	48	72	96	120		
OFCL	22.8	33.8	44.3	58.4	102.0	148.6	186.2		
OCD5	45.3	103.4	173.0	250.7	410.6	528.0	669.3		
GFSI	24.5	37.0	51.4	69.7	127.4	185.5	237.5		
HMNI	25.6	39.7	55.0	77.9	148.7	245.8	325.6		
HWFI	25.2	38.6	52.3	70.4	129.4	205.3	266.7		
EMXI	23.9	38.8	53.3	67.7	107.3	148.1	194.4		
CMCI	28.0	45.6	63.8	84.6	137.0	190.8	240.5		
EGRI	25.5	41.1	58.3	77.0	124.6	174.6	225.3		
NVGI	28.8	42.5	58.6	81.4	143.7	235.5	326.7		
AEMI	24.3	36.7	53.0	70.9	125.6	191.2	238.0		
FSSE	22.0	33.0	44.4	57.5	97.0	153.6	205.9		
TVCA	22.3	32.7	44.1	58.8	103.7	156.2	193.4		
HCCA	21.7	32.2	43.6	57.1	102.5	155.5	198.8		
TABD	36.4	71.9	108.6	144.9	213.4	289.4	388.5		
ТАВМ	32.4	54.1	75.3	97.5	145.2	209.0	249.9		
TABS	44.7	82.5	113.2	135.7	180.0	237.8	277.6		
TCLP	47.8	108.1	176.4	248.8	395.4	490.2	599.8		
# Cases	282	258	235	210	168	125	98		

Table 3b.Homogenous comparison of Atlantic basin early track guidance model bias
vectors (°/n mi) for 2018.

			Fore	ecast Perio	d (h)		
Model ID	12	24	36	48	72	96	120
OFCL	324/002	267/006	252/011	252/014	251/023	234/014	286/032
OCD5	289/006	298/013	324/021	352/036	017/092	038/207	043/324
GFSI	347/006	329/008	318/008	323/007	324/008	084/039	050/065
HMNI	339/008	319/014	313/017	313/018	306/014	065/035	049/076
HWFI	348/006	312/010	289/015	275/012	270/029	256/009	350/038
EMXI	266/005	254/014	249/023	246/030	245/052	255/058	283/085
CMCI	259/004	244/011	237/015	23/016	238/018	149/019	102/062
EGRI	222/001	221/006	215/010	217/013	197/018	157/025	112/015
NVGI	323/006	293/006	258/005	225/003	118/013	114/050	115/087
AEMI	318/005	291/007	276/009	271/009	249/008	086/028	054/053
FSSE	241/001	233/007	230/014	234/021	234/037	241/035	285/047
TVCA	342/004	298/006	272/009	261/011	248/017	169/010	349/015
HCCA	221/001	223/007	226/013	227/019	231/033	221/038	258/046
TABD	067/010	061/031	050/056	046/079	044/119	053/160	040/252
TABM	336/003	007/007	007/013	015/016	066/025	072/063	046/088
TABS	297/021	276/045	256/063	236/072	196/074	126/055	072/046
TCLP	257/009	261/023	268/033	287/039	326/056	029/114	040/211
# Cases	282	258	235	210	168	125	98

Table 4.Homogenous comparison of official and Decay-SHIFOR5 intensity forecast errors
in the Atlantic basin for the 2018 season for all tropical cyclones. Averages for the
previous 5-yr period are shown for comparison.

			Fore	cast Perio	od (h)		
	12	24	36	48	72	96	120
2018 mean OFCL error (kt)	4.9	7.8	9.2	10.2	13.4	12.8	12.2
2018 mean Decay- SHIFOR5 error (kt)	6.4	10.6	14.1	16.7	20.6	20.4	20.2
2018 mean OFCL skill relative to Decay-SHIFOR5 (%)	23.4	26.4	34.8	38.9	35.0	37.3	39.6
2018 OFCL bias (kt)	0.0	0.4	0.4	-0.4	0.1	-1.4	-2.7
2018 number of cases	354	318	286	254	202	160	127
2013-17 mean OFCL error (kt)	5.4	7.9	10.1	11.4	12.9	14.7	14.9
2013-17 mean Decay- SHIFOR5 error (kt)	7.0	10.8	14.2	17.4	20.9	22.7	24.1
2013-17 mean OFCL skill relative to Decay-SHIFOR5 (%)	22.9	26.9	28.9	34.5	38.3	35.2	38.2
2013-17 OFCL bias (kt)	-0.8	-1.0	-1.2	-1.5	-2.2	-1.1	0.1
2013-17 number of cases	1141	1012	893	777	576	435	349
2018 OFCL error relative to 2013-17 mean (%)	-9.3	-1.3	-8.9	-10.5	3.9	-12.9	-18.1
2018 Decay-SHIFOR5 error relative to 2013-17 mean (%)	-8.6	-1.9	-0.7	-4.0	-1.4	-10.1	-16.2

Table 5a.Homogenous comparison of selected Atlantic basin early intensity guidance model
errors (kt) for 2018. Errors smaller than the NHC official forecast are shown in
boldface.

			Fore	cast Perio	d (h)		
Model ID	12	24	36	48	72	96	120
OFCL	5.0	7.8	9.2	10.2	13.2	12.9	11.3
OCD5	6.7	10.8	14.3	17.0	20.1	21.2	20.9
HWFI	6.1	8.1	9.3	10.7	13.7	15.6	15.8
HMNI	6.6	9.4	10.9	11.3	13.2	15.2	17.7
DSHP	6.3	8.7	11.1	12.7	15.7	17.4	16.1
LGEM	6.2	8.6	10.8	12.2	14.3	15.6	14.3
IVCN	5.7	7.4	8.8	9.9	12.0	13.1	12.4
FSSE	5.7	7.9	9.5	10.5	12.8	13.9	12.8
HCCA	5.8	7.7	9.5	10.3	12.4	13.2	11.3
GFSI	6.2	8.9	10.6	11.2	12.2	13.9	14.0
EMXI	7.2	11.0	12.9	13.8	16.2	19.4	20.8
TCLP	6.5	10.3	13.1	15.4	19.0	20.7	21.5
# Cases	296	275	250	224	173	129	99

Table 5b.Homogenous comparison of selected Atlantic basin early intensity guidance model
biases (kt) for 2018. Biases smaller than the NHC official forecast are shown in
boldface.

			Fore	cast Perio	d (h)		
Model ID	12	24	36	48	72	96	120
OFCL	0.4	1.3	1.5	0.6	1.7	-0.5	-2.0
OCD5	-0.5	-0.5	-0.7	-0.9	0.1	2.3	2.1
HWFI	-2.0	-1.7	-2.1	-2.0	-0.5	2.5	0.6
HMNI	-0.9	-1.8	-3.4	-4.4	-7.6	-8.9	-11.9
DSHP	-0.2	0.3	0.2	-0.1	0.1	-1.1	-0.8
LGEM	-0.5	-0.3	-0.4	-0.7	0.1	-1.0	-1.9
IVCN	-0.9	-1.0	-1.5	-1.6	-1.6	-1.9	-3.7
FSSE	-0.1	1.0	1.4	1.7	2.5	0.4	-0.5
HCCA	-0.9	-0.7	-1.3	-0.7	0.0	1.0	-0.3
GFSI	-0.9	-0.6	-1.1	-1.6	-1.9	-1.0	0.1
EMXI	-2.5	-4.0	-6.2	-8.1	-9.6	-13.3	-17.9
TCLP	-1.2	-2.3	-3.0	-3.4	-4.0	-3.8	-3.2
# Cases	296	275	250	224	173	129	99

Table 6.Official Atlantic track and intensity forecast verifications (OFCL) for 2018 by storm.
CLIPER5 (CLP5) and SHIFOR5 (SHF5) forecast errors are given for comparison
and indicated collectively as OCD5. The number of track and intensity forecasts
are given by NT and NI, respectively. Units for track and intensity errors are n mi
and kt, respectively.

Verification	statist	ics for:	AL012	018		ALBE	IRTO
VT (h) 000 012 024 036 048 072 096 120		18.2 39.8 34.1 40.1 47.9 70.4 158.9	69.3 126.5 185.5 248.5	11 7	4.3	1.9 6.6 8.8 7.6 7.9 5.3 3.1	
Verification	statist	ics for:	AL022	018		BE	CRYL
VT (h) 000 012 024 036 048 072 096 120	10	2.9 41.2 71.0 63.1 67.1 -999.0 -999.0	2.9 53.9 85.8 77.2 104.2 -999.0	18 14 10 6 4 0 0	22.5	2.2 9.8 17.7 25.7 26.2 -999.0 -999.0	
Verification	statist	ics for:	AL032	018		CH	HRIS
VT (h)	NT	OFCI					
000 012 024 036 048 072 096 120	14 22 20 18 16 12 8 4	34.6 54.7 85.5 149.7 180.0	8.1 42.1 107.1 179.7 254.3 332.2 324.5	NI 24 22 20 18 16 12 8 4		1.5 5.6 8.9 10.6 11.1 16.7	
012 024 036 048 072 096	24 22 20 18 16 12 8 4	7.9 22.0 34.6 54.7 85.5 149.7 180.0 160.9	8.1 42.1 107.1 179.7 254.3 332.2 324.5 203.4	24 22 20 18 16 12 8 4	1.2 6.4 7.5 5.6 4.7 10.4 13.8	1.5 5.6 8.9 10.6 11.1 16.7 21.1 21.5	CBBY

Verification	statist	ics for:	AL052	2018		ERN	ESTO
VT (h) 000	NT 11		OCD5 5.6	NI 11	OFCL 0.0		
012	9		45.8			2.9	
024	7	16.7	110.6	7	3.6	3.3	
036	5		222.1	5	3.0		
048	3	14.2	365.0	3	5.0	16.7	
072	0	-999.0	-999.0	0	-999.0	-999.0	
096			-999.0		-999.0		
120	0	-999.0	-999.0	0	-999.0	-999.0	
Verification	statist	ics for:	AL062	2018		FLOR	ENCE
VT (h)	NT			NI	OFCL		
000	67	4.0	4.3	67	2.5	2.5	
012	65	18.3	33.4	65	6.3	8.7	
024	63	30.8		63	12.7		
036	61	40.8	136.2	61	16.1		
048	59			59			
072		71.5					
096	51	115.7	538.5	51	17.3	29.2	
120	47	155.7	707.8	47	13.3	27.1	
Verification	statist	ics for:	AL072	2018		GO:	RDON
Verification VT (h)	statist NT		AL072 OCD5		OFCL		RDON
	NT 14	OFCL 8.5	OCD5 8.5		2.1	OCD5 2.5	RDON
VT (h)	NT	OFCL 8.5 16.6	OCD5 8.5 32.2	NI 14 12	2.1 5.8	OCD5 2.5 7.8	RDON
VT (h) 000 012 024	NT 14	OFCL 8.5 16.6	OCD5 8.5	NI 14 12	2.1	OCD5 2.5 7.8	RDON
VT (h) 000 012	NT 14 12 10 8	OFCL 8.5 16.6 19.7 28.0	OCD5 8.5 32.2 74.1 119.0	NI 14 12 10 8	2.1 5.8 6.5 10.0	OCD5 2.5 7.8 12.8 15.8	RDON
VT (h) 000 012 024 036 048	NT 14 12 10 8 6	OFCL 8.5 16.6 19.7 28.0 45.1	OCD5 8.5 32.2 74.1 119.0 189.2	NI 14 12 10 8 6	2.1 5.8 6.5 10.0 6.7	OCD5 2.5 7.8 12.8 15.8 14.2	RDON
VT (h) 000 012 024 036 048 072	NT 14 12 10 8 6 2	OFCL 8.5 16.6 19.7 28.0 45.1 73.2	OCD5 8.5 32.2 74.1 119.0 189.2 393.7	NI 14 12 10 8 6 2	2.1 5.8 6.5 10.0 6.7 10.0	OCD5 2.5 7.8 12.8 15.8 14.2 12.0	RDON
VT (h) 000 012 024 036 048 072 096	NT 14 12 10 8 6 2	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0	NI 14 12 10 8 6 2 0	2.1 5.8 6.5 10.0 6.7 10.0 -999.0	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0	RDON
VT (h) 000 012 024 036 048 072	NT 14 12 10 8 6 2	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0	OCD5 8.5 32.2 74.1 119.0 189.2 393.7	NI 14 12 10 8 6 2 0	2.1 5.8 6.5 10.0 6.7 10.0	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0	RDON
VT (h) 000 012 024 036 048 072 096	NT 14 12 10 8 6 2 0 0	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0	NI 14 12 10 8 6 2 0 0	2.1 5.8 6.5 10.0 6.7 10.0 -999.0	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0	RDON
VT (h) 000 012 024 036 048 072 096 120	NT 14 12 10 8 6 2 0 0 5 statist NT	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: OFCL	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5	NI 14 12 10 8 6 2 0 0 0	2.1 5.8 6.5 10.0 6.7 10.0 -999.0	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000	NT 14 12 10 8 6 2 0 0 5 5 tatist	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: OFCL	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082	NI 14 12 10 8 6 2 0 0 0	2.1 5.8 6.5 10.0 6.7 10.0 -999.0 -999.0 OFCL 1.4	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE OCD5 1.8	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7	NI 14 12 10 8 6 2 0 0 0 2018 NI 36 34	2.1 5.8 6.5 10.0 6.7 10.0 -999.0 -999.0 OFCL 1.4 4.0	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE OCD5 1.8 5.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34 32	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5 45.1	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7 89.1	NI 14 12 10 8 6 2 0 0 0 2018 NI 36 34 32	2.1 5.8 6.5 10.0 6.7 10.0 -999.0 -999.0 OFCL 1.4 4.0 4.8	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE: OCD5 1.8 5.9 10.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34 32 30	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5 45.1 68.0	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7 89.1 139.6	NI 14 12 10 8 6 2 0 0 0 0 2018 NI 36 34 32 30	2.1 5.8 6.5 10.0 6.7 10.0 -999.0 -999.0 OFCL 1.4 4.0 4.8 4.5	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE: OCD5 1.8 5.9 10.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34 32	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5 45.1 68.0	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7 89.1 139.6 200.1	NI 14 12 10 8 6 2 0 0 0 2018 NI 36 34 32	2.1 5.8 6.5 10.0 6.7 10.0 -999.0 -999.0 OFCL 1.4 4.0 4.8 4.5 4.8	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE: OCD5 1.8 5.9 10.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34 32 30	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5 45.1 68.0 94.2 150.7	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7 89.1 139.6 200.1 359.4	NI 14 12 10 8 6 2 0 0 0 0 2018 NI 36 34 32 30	2.1 5.8 6.5 10.0 6.7 10.0 -999.0 -999.0 OFCL 1.4 4.0 4.8 4.5	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE OCD5 1.8 5.9 10.0 14.3	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34 32 30 28	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5 45.1 68.0 94.2 150.7 231.3	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7 89.1 139.6 200.1 359.4 510.3	NI 14 12 10 8 6 2 0 0 0 0 2018 NI 36 34 32 30 28	2.1 5.8 6.5 10.0 -999.0 -999.0 -999.0 OFCL 1.4 4.0 4.8 4.5 4.8 7.9 9.5	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 -999.0 HE OCD5 1.8 5.9 10.0 14.3 17.4 23.8 25.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048 072	NT 14 12 10 8 6 2 0 0 0 statist NT 36 34 32 30 28 24	OFCL 8.5 16.6 19.7 28.0 45.1 73.2 -999.0 -999.0 ics for: 0FCL 12.9 25.5 45.1 68.0 94.2 150.7	OCD5 8.5 32.2 74.1 119.0 189.2 393.7 -999.0 -999.0 AL082 OCD5 13.5 40.7 89.1 139.6 200.1 359.4 510.3	NI 14 12 10 8 6 2 0 0 0 0 2018 NI 36 34 32 30 28 24	2.1 5.8 6.5 10.0 -999.0 -999.0 -999.0 OFCL 1.4 4.0 4.8 4.5 4.8 7.9	OCD5 2.5 7.8 12.8 15.8 14.2 12.0 -999.0 -999.0 HE OCD5 1.8 5.9 10.0 14.3 17.4 23.8	

	statist	ics for:	AL092()18]	ISAA
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	30	8.6	8.8	30	1.3	1.3	
012	28	23.1	35.4	28	4.1	4.7	
024	26	30.0	67.1	26	8.8	9.9	
036	24	28.3	111.3	24	12.7	16.2	
048	22	29.2	167.8	22	15.0	21.3	
072	18	49.8	328.3	18	21.4	27.6	
096	14	57.2	536.1	14	26.1	26.1	
120	10	62.2	774.4	10	31.0	27.2	
Verification	statist	ics for:	AL1020)18		L	JOYC
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	25	9.8	9.8	25	0.4	0.4	
012	23	25.7	64.5	23	2.8	4.3	
024	21	40.3	161.5	21	5.0	6.8	
036	19	58.3	267.8	19	5.3	9.2	
048	17	77.0	387.0	17	3.8	13.3	
072	13	147.1	623.1	13	3.5	25.2	
096	13	191.8	698.5	3	10.0	38.3	
120	0	-999.0	-999.0	0	-999.0		
Verification	statist	ics for:	AL112(018		EI	LEVE
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	4	2.9	2.9	4	0.0	0.0	
012	2	29.2	51.5	2	5.0	8.0	
024	0	-999.0	-999.0	0	-999.0		
024	0	-999.0		0	-999.0		
048	0	-999.0		0	-999.0		
	-			-			
072	0	-999.0		0	-999.0		
096 120	0	-999.0 -999.0	-999.0 -999.0	0 0	-999.0 -999.0		
096 120	0	-999.0	-999.0	0			KIR
096 120 Verification	0 statist	-999.0 ics for:	-999.0 AL1220	0	-999.0	-999.0	KIR
096 120 Verification VT (h)	0 statist NT	-999.0 ics for: OFCL	-999.0 AL1220 OCD5	0)18 NI	-999.0 OFCL	-999.0 OCD5	KIR
096 120 Verification VT (h) 000	0 statist NT 15	-999.0 ics for: OFCL 5.4	-999.0 AL1220 OCD5 5.4	0 018 NI 15	-999.0 OFCL 3.0	-999.0 OCD5 3.3	KIR
096 120 Verification VT (h) 000 012	0 statist NT 15 11	-999.0 ics for: OFCL 5.4 29.2	-999.0 AL1220 OCD5 5.4 38.4	0 018 NI 15 11	-999.0 OFCL 3.0 4.5	-999.0 OCD5 3.3 5.9	KIR
096 120 Verification VT (h) 000 012 024	0 statist 15 11 7	-999.0 ics for: OFCL 5.4 29.2 45.9	-999.0 AL1220 OCD5 5.4 38.4 65.2	0 018 NI 15 11 7	-999.0 OFCL 3.0 4.5 4.3	-999.0 OCD5 3.3 5.9 8.3	KIR
096 120 Verification VT (h) 000 012 024 036	0 statist 15 11 7 5	-999.0 ics for: OFCL 5.4 29.2 45.9 67.7	-999.0 AL1220 OCD5 5.4 38.4 65.2 89.3	0 018 NI 15 11 7 5	-999.0 OFCL 3.0 4.5 4.3 4.0	-999.0 OCD5 3.3 5.9 8.3 16.2	KIR
096 120 Verification VT (h) 000 012 024 036 048	0 statist 15 11 7 5 3	-999.0 ics for: OFCL 5.4 29.2 45.9 67.7 93.3	-999.0 AL1220 OCD5 5.4 38.4 65.2 89.3 106.4	0 018 NI 15 11 7 5 3	-999.0 OFCL 3.0 4.5 4.3 4.0 3.3	-999.0 OCD5 3.3 5.9 8.3 16.2 25.7	KIR
096 120 Verification VT (h) 000 012 024 036 048 072	0 statist NT 15 11 7 5 3 2	-999.0 ics for: OFCL 5.4 29.2 45.9 67.7 93.3 75.8	-999.0 AL1220 OCD5 5.4 38.4 65.2 89.3 106.4 512.3	0 018 NI 15 11 7 5 3 2	-999.0 OFCL 3.0 4.5 4.3 4.0 3.3 5.0	-999.0 OCD5 3.3 5.9 8.3 16.2 25.7 8.5	KIR
096 120 Verification VT (h) 000 012 024 036 048	0 statist 15 11 7 5 3	-999.0 ics for: OFCL 5.4 29.2 45.9 67.7 93.3	-999.0 AL1220 OCD5 5.4 38.4 65.2 89.3 106.4	0 018 NI 15 11 7 5 3	-999.0 OFCL 3.0 4.5 4.3 4.0 3.3	-999.0 OCD5 3.3 5.9 8.3 16.2 25.7	KIR

Verification	statist	ics for:	AL132	018		LES	SLIE
VT (h) 000 012 024 036 048 072 096	NT 68 64 60 56 52 48 47	OFCL 6.5 20.2 30.8 46.6 69.5 123.9 162.8	OCD5 6.7 54.1 133.0 226.3 329.8 467.2 545.7	NI 68 64 60 56 52 48 47	OFCL 0.4 3.0 4.2 4.7 4.7 6.1 8.2	OCD5 0.4 4.2 6.2 8.1 9.5 10.4 9.8	
120 Verification	43 statist	189.8 ics for:	653.9 AL142	43 018	9.4	11.3 MICH	HAEL
VT (h) 000 012 024 036 048 072 096 120	NT 19 17 15 13 11 7 3 0	OFCL 5.5 20.0 34.5 47.1 45.9 64.4 85.2 -999.0	186.8 334.0 567.1	NI 19 17 15 13 11 7 3 0	OFCL 1.8 6.8 12.3 14.6 19.1 24.3 3.3 -999.0	OCD5 2.1 9.9 18.7 27.8 32.5 43.3 12.0 -999.0	
Verification							
	statist	ics for:	AL152	018		NAI	DINE
VT (h) 000 012 024 036 048 072 096 120	Statist NT 15 13 11 9 7 3 0 0	OFCL 7.4 32.0 44.1 43.6 44.8	OCD5 8.3 40.2 73.1 112.6 146.6 332.1 -999.0	018 NI 15 13 11 9 7 3 0 0		NAI OCD5 5.3 9.9 13.5 16.7 19.0 16.3 -999.0 -999.0	DINE
VT (h) 000 012 024 036 048 072 096	NT 15 13 11 9 7 3 0 0	OFCL 7.4 32.0 44.1 43.6 44.8 64.5 -999.0 -999.0	OCD5 8.3 40.2 73.1 112.6 146.6 332.1 -999.0 -999.0	NI 15 13 11 9 7 3 0 0	5.3 5.8 5.0 3.3 5.0 5.0 -999.0	OCD5 5.3 9.9 13.5 16.7 19.0 16.3 -999.0 -999.0	DINE

Table 7.Homogenous comparison of official and CLIPER5 track forecast errors in the
eastern North Pacific basin in 2018 for all tropical cyclones. Averages for the
previous 5-yr period are shown for comparison.

			Fore	cast Perio	d (h)		
	12	24	36	48	72	96	120
2018 mean OFCL error (n mi)	20.5	32.3	42.0	49.6	66.9	82.8	102.5
2018 mean CLIPER5 error (n mi)	33.2	69.9	113.6	162.8	273.5	364.7	429.5
2018 mean OFCL skill relative to CLIPER5 (%)	38.3	53.8	63.0	69.5	75.5	77.3	76.1
2018 mean OFCL bias vector (°/n mi)	326/002	101/001	098/003	072/004	030/008	013/018	018/034
2018 number of cases	413	373	337	300	242	196	161
2013-2017 mean OFCL error (n mi)	21.9	33.3	43.2	53.9	79.8	109.0	146.7
2013-2017 mean CLIPER5 error (n mi)	35.0	71.2	110.1	147.1	213.9	267.6	337.4
2013-2017 mean OFCL skill relative to CLIPER5 (%)	37.4	53.3	60.8	63.4	62.7	59.3	56.5
2013-2017 mean OFCL bias vector (°/n mi)	328/003	325/004	328/004	344/004	043/007	060/014	021/013
2013-2017 number of cases	1647	1472	1302	1153	903	698	523
2018 OFCL error relative to 2013- 2017 mean (%)	-6.4	-2.8	-2.8	-8.0	-16.2	-24.0	-30.1
2018 CLIPER5 error relative to 2013- 2017 mean (%)	-5.1	-1.8	3.2	10.7	27.9	36.3	27.3

Table 8a.Homogenous comparison of eastern North Pacific basin early track guidance
model errors (n mi) for 2018. Errors smaller than the NHC official forecast are
shown in boldface.

		Forecast Period (h)							
Model ID	12	24	36	48	72	96	120		
OFCL	18.8	29.7	38.8	48.0	65.4	80.9	104.3		
OCD5	31.7	68.3	114.1	166.7	281.5	382.6	454.2		
GFSI	22.2	36.5	48.9	59.3	82.4	109.7	137.0		
HWFI	23.0	37.9	50.8	60.6	89.1	128.6	150.4		
HMNI	23.5	37.6	49.1	60.1	78.5	105.1	133.0		
EMXI	20.9	32.7	44.0	57.4	83.3	108.6	139.5		
CMCI	29.1	47.5	65.0	81.1	111.7	144.9	189.9		
EGRI	22.6	38.6	56.2	73.6	111.1	142.3	175.9		
NVGI	26.9	45.0	61.7	77.4	118.2	156.1	194.9		
AEMI	21.5	35.5	47.0	56.7	81.3	103.8	124.3		
FSSE	19.0	29.5	38.3	48.6	73.2	100.2	131.4		
TVCE	18.6	29.0	38.0	46.0	64.3	79.7	95.2		
HCCA	18.1	27.6	36.2	44.9	64.7	81.0	108.9		
TABD	27.4	53.4	77.0	93.1	113.1	148.1	195.0		
TABM	25.3	45.4	62.5	73.9	95.8	117.8	144.1		
TABD	32.6	63.0	86.7	103.5	134.6	173.9	199.4		
TCLP	31.2	68.0	112.7	163.6	270.1	367.9	424.4		
# Cases	299	272	250	225	185	154	126		

Table 8b.Homogenous comparison of eastern North Pacific basin early track guidance
model bias vectors (%n mi) for 2018.

	Forecast Period (h)								
Model ID	12	24	36	48	72	96	120		
OFCL	324/002	338/003	002/004	012/008	004/015	008/026	012/044		
OCD5	298/004	292/009	275/020	273/036	268/072	273/006	016/053		
GFSI	042/004	061/009	066/016	069/025	062/041	050/047	038/061		
HWFI	044/003	052/007	055/012	059/020	057/038	054/053	046/066		
HMNI	335/005	350/007	009/008	029/012	020/025	013/043	003/061		
EMXI	288/008	278/014	270/019	266/023	271/030	285/035	308/037		
CMCI	027/004	041/011	042/018	042/028	032/048	024/066	019/066		
EGRI	298/005	283/008	278/014	274/020	271/036	279/035	307/031		
NVGI	314/008	302/014	297/020	301/025	320/046	336/085	340/126		
AEMI	028/001	055/005	057/012	057/019	047/033	036/038	021/046		
FSSE	345/001	091/004	090/007	078/011	041/021	029/038	026/072		
TVCE	327/003	331/004	346/005	003/007	357/014	357/022	357/035		
HCCA	303/001	336/001	015/003	022/005	004/014	004/022	022/044		
TABD	016/006	043/016	044/029	047/040	041/058	029/087	031/134		
TABM	340/009	342/013	348/014	017/011	052/025	048/039	032/068		
TABD	337/013	328/020	320/020	306/020	237/011	111/035	052/057		
TCLP	299	272	250	225	185	154	126		

Table 9.Homogenous comparison of official and Decay-SHIFOR5 intensity forecast errors
in the eastern North Pacific basin for the 2018 season for all tropical cyclones.
Averages for the previous 5-yr period are shown for comparison.

			For	ecast Pe	riod (h)		
	12	24	36	48	72	96	120
2018 mean OFCL error (kt)	6.1	10.4	12.7	14.1	15.3	16.4	18.8
2018 mean Decay- SHIFOR5 error (kt)	8.0	14.0	18.2	21.1	25.0	28.4	31.1
2018 mean OFCL skill relative to Decay- SHIFOR5 (%)	23.8	25.7	30.2	33.2	38.8	42.3	39.5
2018 OFCL bias (kt)	-0.3	-0.6	-1.2	-1.5	-2.7	-6.3	-12.2
2018 number of cases	413	373	337	300	242	196	161
2013-17 mean OFCL error (kt)	6.0	9.8	12.1	13.5	15.4	15.1	14.5
2013-17 mean Decay- SHIFOR5 error (kt)	7.7	12.7	15.9	18.2	20.3	20.7	19.0
2013-17 mean OFCL skill relative to Decay- SHIFOR5 (%)	22.1	22.8	25.3	25.8	24.1	27.1	23.7
2013-17 OFCL bias (kt)	-0.8	-1.2	-2.0	-3.0	-3.3	-2.9	-2.7
2013-17 number of cases	1647	1472	1302	1153	903	698	523
2018 OFCL error relative to 2013-17 mean (%)	1.7	6.1	5.0	4.4	-0.6	8.6	29.7
2018 Decay-SHIFOR5 error relative to 2013-17 mean (%)	3.9	10.2	14.5	15.9	23.2	37.2	63.7

Table 10a.Homogenous comparison of eastern North Pacific basin early intensity guidance
model errors (kt) for 2018. Errors smaller than the NHC official forecast are shown
in boldface.

	Forecast Period (h)							
Model ID	12	24	36	48	72	96	120	
OFCL	6.7	11.1	13.4	14.2	15.0	16.3	19.1	
OCD5	8.6	15.1	19.3	21.7	24.6	28.4	30.3	
HWFI	7.8	12.1	14.8	16.0	15.8	16.4	20.8	
HMNI	7.9	12.6	15.7	17.7	17.7	19.6	23.0	
DSHP	8.0	13.6	17.5	19.7	20.9	23.4	25.0	
LGEM	7.8	13.0	16.9	18.7	19.5	22.9	26.9	
IVCN	6.9	11.1	13.6	14.6	15.1	17.7	21.2	
HCCA	6.8	10.9	13.4	14.1	14.7	16.1	20.1	
FSSE	6.8	10.8	13.3	14.6	17.0	20.3	25.3	
GFSI	9.3	15.2	19.0	19.9	19.8	22.9	26.4	
EMXI	10.2	16.5	21.0	23.2	23.0	24.4	30.2	
TCLP	8.3	15.7	21.8	25.7	29.7	32.2	34.9	
# Cases	331	307	282	257	208	173	142	

Table 10b.Homogenous comparison of eastern North Pacific basin early intensity guidance
model biases (kt) for 2018. Biases smaller than the NHC official forecast are
shown in boldface.

		Forecast Period (h)							
Model ID	12	24	36	48	72	96	120		
OFCL	-0.1	0.0	-0.7	-1.1	-2.7	-7.1	-13.0		
OCD5	-2.0	-4.9	-8.8	-12.3	-18.1	-21.7	-26.6		
HWFI	-2.7	-3.3	-3.9	-4.6	-6.3	-9.2	-13.2		
HMNI	-2.3	-4.5	-6.6	-8.2	-11.2	-14.7	-20.1		
DSHP	-1.2	-2.2	-3.6	-4.6	-6.5	-11.2	-17.5		
LGEM	-2.2	-5.5	-8.7	-10.3	-13.0	-17.4	-22.8		
IVCN	-2.0	-3.9	-5.4	-6.3	-7.9	-11.4	-16.7		
HCCA	-0.7	-1.6	-2.8	-2.1	-3.5	-7.4	-13.5		
FSSE	-0.9	-1.8	-3.2	-4.2	-8.3	-13.4	-21.2		
GFSI	-0.7	-0.6	-1.6	-2.5	-6.0	-10.6	-17.9		
EMXI	-4.3	-7.0	-9.6	-12.2	-16.6	-20.2	-28.0		
TCLP	-3.4	-9.2	-14.4	-18.6	-24.3	-27.2	-31.9		
# Cases	331	307	282	257	208	173	142		

Table 11. Official eastern North Pacific track and intensity forecast verifications (OFCL) for 2018 by storm. CLIPER5 (CLP5) and SHIFOR5 (SHF5) forecast errors are given for comparison and indicated collectively as OCD5. The number of track and intensity forecasts are given by NT and NI, respectively. Units for track and intensity errors are n mi and kt, respectively.

Verification	statist	ics for:	EP012	018			ONE
VT (h) 000 012 024	NT 4 2 0	OFCL 6.5 51.6 -999.0	OCD5 6.5 40.4 -999.0	NI 4 2 0	OFCL 0.0 0.0 -999.0	OCD5 0.0 4.0 -999.0	
036	0	-999.0		0		-999.0	
048	0	-999.0		0		-999.0	
072	0	-999.0		0		-999.0	
096		-999.0		0		-999.0	
120	0	-999.0	-999.0	0	-999.0	-999.0	
Verification	statist	ics for:	EP022	018		AL	ETTA
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	22	5.9	5.9	22	0.5	0.5	
012	20	23.4	27.6	20	8.0	11.4	
024	18	42.6	53.1	18	16.9	23.6	
036	16	52.8	80.4	16	21.2	33.9	
048	14	65.9	105.7	14	22.5	42.3	
072	10		178.3	10			
096	6		251.1	6		9.2	
120	2	47.9	283.7	2	22.5	4.0	
Verification	statist	ics for:	EP0320	018			BUD
Verification VT (h)	statist NT	ics for: OFCL		D18 NI	OFCL	OCD5	BUD
					OFCL 1.3	OCD5 1.3	BUD
VT (h)	NT	OFCL	OCD5	NI			BUD
VT (h) 000	NT 23	OFCL 11.5	OCD5 11.8	NI 23	1.3	1.3	BUD
VT (h) 000 012	NT 23 21	OFCL 11.5 19.4	OCD5 11.8 39.1	NI 23 21	1.3 6.4 13.2	1.3 8.9	BUD
VT (h) 000 012 024 036 048	NT 23 21 19 17 15	OFCL 11.5 19.4 24.0 26.9 30.7	OCD5 11.8 39.1 71.1 113.0 156.3	NI 23 21 19 17 15	1.3 6.4 13.2 16.8 16.0	1.3 8.9 17.6 25.5 27.0	BUD
VT (h) 000 012 024 036 048 072	NT 23 21 19 17 15 11	OFCL 11.5 19.4 24.0 26.9 30.7 37.9	OCD5 11.8 39.1 71.1 113.0 156.3 265.9	NI 23 21 19 17 15 11	1.3 6.4 13.2 16.8 16.0 13.6	1.3 8.9 17.6 25.5 27.0 17.9	BUD
VT (h) 000 012 024 036 048 072 096	NT 23 21 19 17 15 11 7	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8	NI 23 21 19 17 15 11 7	1.3 6.4 13.2 16.8 16.0 13.6 16.4	1.3 8.9 17.6 25.5 27.0 17.9 8.3	BUD
VT (h) 000 012 024 036 048 072	NT 23 21 19 17 15 11	OFCL 11.5 19.4 24.0 26.9 30.7 37.9	OCD5 11.8 39.1 71.1 113.0 156.3 265.9	NI 23 21 19 17 15 11	1.3 6.4 13.2 16.8 16.0 13.6	1.3 8.9 17.6 25.5 27.0 17.9	BUD
VT (h) 000 012 024 036 048 072 096	NT 23 21 19 17 15 11 7 3	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6	NI 23 21 19 17 15 11 7 3	1.3 6.4 13.2 16.8 16.0 13.6 16.4	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0	BUD
VT (h) 000 012 024 036 048 072 096 120	NT 23 21 19 17 15 11 7 3	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6	NI 23 21 19 17 15 11 7 3	1.3 6.4 13.2 16.8 16.0 13.6 16.4	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0	
VT (h) 000 012 024 036 048 072 096 120 Verification	NT 23 21 19 17 15 11 7 3 statist	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for:	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420	NI 23 21 19 17 15 11 7 3	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 23 21 19 17 15 11 7 3 statist NT 17 15	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for: OFCL	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420 OCD5	NI 23 21 19 17 15 11 7 3 018 NI 17 15	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0 OFCL 0.3 4.7	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL OCD5 0.3 6.1	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 23 21 19 17 15 11 7 3 statist NT 17 15 12	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for: OFCL 9.2 27.8 59.7	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420 OCD5 9.0 36.5 79.4	NI 23 21 19 17 15 11 7 3 018 NI 17 15 12	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0 OFCL 0.3 4.7 7.5	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL OCD5 0.3 6.1 10.8	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 23 21 19 17 15 11 7 3 statist NT 17 15 12 9	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for: OFCL 9.2 27.8 59.7 86.2	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420 OCD5 9.0 36.5 79.4 124.3	NI 23 21 19 17 15 11 7 3 018 NI 17 15 12 9	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0 OFCL 0.3 4.7 7.5 6.7	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL OCD5 0.3 6.1 10.8 15.1	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 23 21 19 17 15 11 7 3 statist NT 17 15 12 9 4	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for: OFCL 9.2 27.8 59.7 86.2 80.2	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420 OCD5 9.0 36.5 79.4 124.3 163.9	NI 23 21 19 17 15 11 7 3 018 NI 17 15 12 9 4	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0 OFCL 0.3 4.7 7.5 6.7 6.2	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL OCD5 0.3 6.1 10.8 15.1 7.2	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048 072	NT 23 21 19 17 15 11 7 3 statist NT 17 15 12 9 4 3	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for: OFCL 9.2 27.8 59.7 86.2 80.2 138.6	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420 OCD5 9.0 36.5 79.4 124.3 163.9 165.2	NI 23 21 19 17 15 11 7 3 018 NI 17 15 12 9 4 3	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0 OFCL 0.3 4.7 7.5 6.7 6.2 10.0	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL OCD5 0.3 6.1 10.8 15.1 7.2 15.3	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 23 21 19 17 15 11 7 3 statist NT 17 15 12 9 4	OFCL 11.5 19.4 24.0 26.9 30.7 37.9 55.9 107.4 ics for: OFCL 9.2 27.8 59.7 86.2 80.2	OCD5 11.8 39.1 71.1 113.0 156.3 265.9 341.8 496.6 EP0420 OCD5 9.0 36.5 79.4 124.3 163.9	NI 23 21 19 17 15 11 7 3 018 NI 17 15 12 9 4	1.3 6.4 13.2 16.8 16.0 13.6 16.4 10.0 OFCL 0.3 4.7 7.5 6.7 6.2	1.3 8.9 17.6 25.5 27.0 17.9 8.3 11.0 CARL OCD5 0.3 6.1 10.8 15.1 7.2	

Verification	statist	ics for:	EP05	2018		DA	NIEL
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	9	7.7	7.7	9	0.6	0.6	
012	7	18.9	30.5	7	2.1	4.9	
024	5	21.5	48.7	5	2.0	6.8	
036	3	10.7	74.9	3	5.0	4.0	
048	1	6.0	116.2	1	5.0	8.0	
072	0	-999.0	-999.0	0	-999.0	-999.0	
096	0	-999.0	-999.0	0	-999.0	-999.0	
120	0	-999.0	-999.0	0	-999.0	-999.0	
Verification	statist	ics for:	EP06	2018		EM	ILIA
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	17	6.4	6.7	17	0.0	0.0	
012	15	18.4	23.8	15	3.3	4.7	
024	13	34.3	50.4	13	9.2	7.9	
036	11	42.3	66.4	11	13.6	12.1	
048	9	42.0	78.6	9	16.7	14.7	
072	5	48.4	139.7	5	18.0	20.8	
096	1	82.6	147.3	1	15.0	23.0	
120	0	-999.0	-999.0	0	-999.0	-999.0	
Verification	statist	ics for:	EP07	2018		F.	ABIO
Verification VT (h)	statist NT	ics for: OFCL	EP07 OCD5	2018 NI	OFCL	F. OCD5	ABIO
					OFCL 1.1		ABIO
VT (h)	NT	OFCL	OCD5	NI		OCD5	ABIO
VT (h) 000	NT 22	OFCL 6.6	OCD5 6.6	NI 22	1.1	OCD5 1.1	ABIO
VT (h) 000 012	NT 22 20	OFCL 6.6 26.5	OCD5 6.6 33.0	NI 22 20	1.1 5.5	OCD5 1.1 5.2	ABIO
VT (h) 000 012 024	NT 22 20 18	OFCL 6.6 26.5 33.3	OCD5 6.6 33.0 50.5	NI 22 20 18	1.1 5.5 9.2	OCD5 1.1 5.2 9.8	ABIO
VT (h) 000 012 024 036	NT 22 20 18 16	OFCL 6.6 26.5 33.3 45.8	OCD5 6.6 33.0 50.5 74.9	NI 22 20 18 16	1.1 5.5 9.2 10.0	OCD5 1.1 5.2 9.8 11.4	ABIO
VT (h) 000 012 024 036 048	NT 22 20 18 16 14	OFCL 6.6 26.5 33.3 45.8 53.2	OCD5 6.6 33.0 50.5 74.9 102.5	NI 22 20 18 16 14	1.1 5.5 9.2 10.0 10.0	OCD5 1.1 5.2 9.8 11.4 13.3	ABIO
VT (h) 000 012 024 036 048 072	NT 22 20 18 16 14 10	OFCL 6.6 26.5 33.3 45.8 53.2 59.2	OCD5 6.6 33.0 50.5 74.9 102.5 188.3	NI 22 20 18 16 14 10	1.1 5.5 9.2 10.0 10.0 14.0	OCD5 1.1 5.2 9.8 11.4 13.3 18.5	ABIO
VT (h) 000 012 024 036 048 072 096	NT 22 20 18 16 14 10 6 2	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5	NI 22 20 18 16 14 10 6 2	1.1 5.5 9.2 10.0 10.0 14.0 16.7	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5	ABIO ILMA
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h)	NT 22 20 18 16 14 10 6 2 statist NT	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: OFCL	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5	NI 22 20 18 16 14 10 6 2 2018 NI	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000	NT 22 20 18 16 14 10 6 2 statist NT 11	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: OFCL 13.3	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 218.3 280.5 EP08 OCD5 13.3	NI 22 20 18 16 14 10 6 2 2018 NI 11	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 22 20 18 16 14 10 6 2 statist NT 11 9	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: OFCL 13.3 35.3	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5 13.3 36.5	NI 22 20 18 16 14 10 6 2 2018 2018 NI 11 9	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8 2.8	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8 2.8	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 22 20 18 16 14 10 6 2 statist NT 11 9 7	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: 0FCL 13.3 35.3 52.8	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5 13.3 36.5 48.1	NI 22 20 18 16 14 10 6 2 2018 2018 NI 11 9 7	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8 2.8 7.1	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8 2.8 5.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 22 20 18 16 14 10 6 2 statist NT 11 9 7 5	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: 0FCL 13.3 35.3 52.8 83.0	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5 13.3 36.5 48.1 56.5	NI 22 20 18 16 14 10 6 2 2018 2018 NI 11 9 7 5	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8 2.8 7.1 10.0	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8 2.8 5.9 9.2	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 22 20 18 16 14 10 6 2 statist NT 11 9 7 5 3	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: OFCL 13.3 35.3 52.8 83.0 120.2	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5 13.3 36.5 48.1 56.5 56.6	NI 22 20 18 16 14 10 6 2 2018 2018 NI 11 9 7 5 3	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8 2.8 7.1 10.0 11.7	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8 2.8 5.9 9.2 11.7	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048 072	NT 22 20 18 16 14 10 6 2 statist NT 11 9 7 5 3 0	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: 0FCL 13.3 35.3 52.8 83.0 120.2 -999.0	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5 13.3 36.5 48.1 56.5 56.6 -999.0	NI 22 20 18 16 14 10 6 2 2018 2018 NI 11 9 7 5	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8 2.8 7.1 10.0 11.7 -999.0	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8 2.8 5.9 9.2 11.7 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 22 20 18 16 14 10 6 2 statist NT 11 9 7 5 3	OFCL 6.6 26.5 33.3 45.8 53.2 59.2 62.9 50.4 ics for: OFCL 13.3 35.3 52.8 83.0 120.2	OCD5 6.6 33.0 50.5 74.9 102.5 188.3 218.3 280.5 EP08 OCD5 13.3 36.5 48.1 56.5 56.6	NI 22 20 18 16 14 10 6 2 2018 2018 NI 11 9 7 5 3	1.1 5.5 9.2 10.0 10.0 14.0 16.7 15.0 OFCL 1.8 2.8 7.1 10.0 11.7	OCD5 1.1 5.2 9.8 11.4 13.3 18.5 14.5 15.5 G OCD5 1.8 2.8 5.9 9.2 11.7	

Verification	statist	ics for:	EP09	2018				NINE
VT (h)	NT	OFCL	OCD5	Ν	т	OFCL	OCD5	
000	4	5.9	5.9		4	0.0	0.0	
012	3	10.0	31.8		3	1.7	7.7	
024	1	13.4	75.7		1	5.0	17.0	
036	0	-999.0	-999.0			99.0	-999.0	
048	0	-999.0				99.0		
072	0		-999.0			99.0		
096	0		-999.0			99.0		
120	0	-999.0				99.0		
Verification	statist	ics for:	EP10	2018			HI	ECTOR
VT (h)	NT	OFCL	OCD5	Ν	I	OFCL	OCD5	
000	23	5.3	5.6	2	3	0.7	0.7	
012	23	12.4	19.8	2	3	8.3	9.9	
024	23	19.2	40.9	2	3	12.8	18.9	
036	23	24.3	67.3	2	3	15.0	25.7	
048	23	29.9	98.1	2	3	18.3	34.1	
072	23	43.3	157.8	2	3	20.4	45.7	
096	23	48.9	237.4	2	3	24.3	55.3	
120	23	59.7	336.3	2	3	28.9	58.3	
Verification	statist	ics for:	EP11	2018			I	LEANA
Verification VT (h)	statist NT	ics for: OFCL	EP11 OCD5	2018 N	I	OFCL	II OCD5	LEANA
						OFCL 1.4		LEANA
VT (h)	NT	OFCL	OCD5	N 1			OCD5	LEANA
VT (h) 000	NT 11	OFCL 10.2	OCD5 10.2	N 1	1 9	1.4	OCD5 1.4	LEANA
VT (h) 000 012	NT 11 9	OFCL 10.2 20.9	OCD5 10.2 52.8	N 1	1 9 7	1.4 8.3	OCD5 1.4 6.0	LEANA
VT (h) 000 012 024	NT 11 9 7	OFCL 10.2 20.9 37.5	OCD5 10.2 52.8 112.1	N 1	1 9 7	1.4 8.3 13.6	OCD5 1.4 6.0 9.1	LEANA
VT (h) 000 012 024 036	NT 11 9 7 5	OFCL 10.2 20.9 37.5 58.2	OCD5 10.2 52.8 112.1 150.8	N 1	1 9 7 5 3	1.4 8.3 13.6 12.0	OCD5 1.4 6.0 9.1 12.2 20.0	LEANA
VT (h) 000 012 024 036 048	NT 11 9 7 5 3	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0	OCD5 10.2 52.8 112.1 150.8 173.8	N 1	1 9 7 5 3 0 -9	1.4 8.3 13.6 12.0 6.7	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0	LEANA
VT (h) 000 012 024 036 048 072	NT 11 9 7 5 3 0	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0	N 1	1 9 7 5 3 0 -9 0 -9	1.4 8.3 13.6 12.0 6.7 99.0	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0	LEANA
VT (h) 000 012 024 036 048 072 096	NT 11 9 7 5 3 0 0 0	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0	N 1	1 9 7 5 3 0 -9 0 -9	1.4 8.3 13.6 12.0 6.7 99.0 99.0	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0	JOHN
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h)	NT 11 9 7 5 3 0 0 0	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: OFCL	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5	N 1 2018 N	1 9 7 5 3 0 -9 0 -9 0 -9 1	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 OCD5	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000	NT 11 9 7 5 3 0 0 0 5 5 3	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: OFCL 10.0	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0	N 1 2018	1 9 7 5 3 0 -9 0 -9 0 -9 1	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 11 9 7 5 3 0 0 0 0 5 statist NT 19 17	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: 0FCL 10.0 25.6	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0 39.2	N 1 2018 N 1 1	1 9 7 5 3 0 -9 0 -9 0 -9 0 -9 1 9 7	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0 OFCL 1.3 5.9	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 -999.0 CCD5 1.3 7.7	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 11 9 7 5 3 0 0 0 0 0 statist NT 19 17 15	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: 0FCL 10.0 25.6 30.1	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0 39.2 72.4	N 1 2018 N 1 1 1	1 9 7 5 3 0 -9 0 -9 0 -9 0 -9 1 9 7 5	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0 0FCL 1.3 5.9 9.7	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 7.7 12.6	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 11 9 7 5 3 0 0 0 0 5 statist NT 19 17	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: 0FCL 10.0 25.6 30.1 31.6	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0 39.2 72.4 119.9	N 1 2018 N 1 1 1 1	1 9 7 5 3 0 -9 0 -9 0 -9 0 -9 1 9 7 5 3	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0 0FCL 1.3 5.9 9.7 15.8	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 OCD5 1.3 7.7 12.6 14.3	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 11 9 7 5 3 0 0 0 0 0 statist NT 19 17 15	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: 0FCL 10.0 25.6 30.1	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0 39.2 72.4	N 1 2018 N 1 1 1	1 9 7 5 3 0 -9 0 -9 0 -9 0 -9 1 9 7 5 3	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0 0FCL 1.3 5.9 9.7	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 7.7 12.6	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 11 9 7 5 3 0 0 0 0 0 statist NT 19 17 15 13	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: 0FCL 10.0 25.6 30.1 31.6	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0 39.2 72.4 119.9	N 1 2018 N 1 1 1 1 1	1 9 7 5 3 0 -9 0 -9 0 -9 0 -9 1 9 7 5 3 1	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0 0FCL 1.3 5.9 9.7 15.8	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 OCD5 1.3 7.7 12.6 14.3	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 11 9 7 5 3 0 0 0 0 0 statist NT 19 17 15 13 11	OFCL 10.2 20.9 37.5 58.2 87.5 -999.0 -999.0 -999.0 ics for: 0FCL 10.0 25.6 30.1 31.6 35.1	OCD5 10.2 52.8 112.1 150.8 173.8 -999.0 -999.0 -999.0 EP12 OCD5 10.0 39.2 72.4 119.9 161.7	N 1 2018 N 1 1 1 1	1 9 7 5 3 0 -9 0 -9 0 -9 0 -9 1 9 7 5 3 1 7 3	1.4 8.3 13.6 12.0 6.7 99.0 99.0 99.0 99.0 0FCL 1.3 5.9 9.7 15.8 19.5	OCD5 1.4 6.0 9.1 12.2 20.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 7.7 12.6 14.3 15.4	

Verification	statisti	cs for:	EP1320)18		KRIS	STY
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	19	6.4	6.4	19	1.8	1.8	
012	19	17.3	35.5	19	6.6	7.8	
024	18	35.0	84.9	18	9.2	11.2	
036	16	56.1	143.1	16	12.2	14.1	
048	14	71.2	221.4	14	11.1	12.1	
072	10	82.3		10	8.0	11.0	
096	6	70.4	668.5	6	15.8	23.5	
120	2	54.2	606.4	2	15.0	27.5	
Verification	statisti	cs for:	EP1420	18		L2	ANE
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	16	3.9	3.9	16	0.6	0.6	
012	16	18.9	22.1	16	3.4	7.0	
024	16	25.7	40.5	16	6.6	11.1	
036	16	27.7	57.8	16	7.8	14.9	
048	16	29.0	77.0	16	8.1	19.9	
072	16	48.4	123.3	16	18.1	33.0	
096	16	69.2	174.6	16	28.4	51.2	
120	16	80.7	222.5	16	38.1	58.0	
Verification	statisti	cs for:	EP1520)18		MIR	IAM
Verification VT (h)	statisti NT	cs for: OFCL	EP1520 OCD5)18 NI	OFCL	MIR: OCD5	IAM
					OFCL 0.0		IAM
VT (h)	NT	OFCL	OCD5	NI		OCD5	IAM
VT (h) 000 012 024	NT 15	OFCL 8.5	OCD5 8.5	NI 15 15 15	0.0	OCD5 0.0	IAM
VT (h) 000 012	NT 15 15	OFCL 8.5 19.3	OCD5 8.5 29.0	NI 15 15	0.0 4.7	OCD5 0.0 3.9	IAM
VT (h) 000 012 024	NT 15 15 15	OFCL 8.5 19.3 29.9	OCD5 8.5 29.0 62.5	NI 15 15 15	0.0 4.7 9.7	OCD5 0.0 3.9 6.9 9.5 11.1	MAI
VT (h) 000 012 024 036	NT 15 15 15 15	OFCL 8.5 19.3 29.9 36.3	OCD5 8.5 29.0 62.5 106.8	NI 15 15 15 15	0.0 4.7 9.7 15.3	OCD5 0.0 3.9 6.9 9.5	ΙΑΜ
VT (h) 000 012 024 036 048	NT 15 15 15 15 15	OFCL 8.5 19.3 29.9 36.3 47.3	OCD5 8.5 29.0 62.5 106.8 169.6	NI 15 15 15 15 15	0.0 4.7 9.7 15.3 22.0	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9	IAM
VT (h) 000 012 024 036 048 072	NT 15 15 15 15 15 15	OFCL 8.5 19.3 29.9 36.3 47.3 68.1	OCD5 8.5 29.0 62.5 106.8 169.6 328.9	NI 15 15 15 15 15 15	0.0 4.7 9.7 15.3 22.0 18.3	OCD5 0.0 3.9 6.9 9.5 11.1 11.3	IAM
VT (h) 000 012 024 036 048 072 096	NT 15 15 15 15 15 15 14 10	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7	NI 15 15 15 15 15 15 14 10	0.0 4.7 9.7 15.3 22.0 18.3 9.6	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h)	NT 15 15 15 15 15 15 14 10	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: OFCL	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5	NI 15 15 15 15 15 15 14 10	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000	NT 15 15 15 15 15 15 15 14 10 statisti NT 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: OFCL 4.2	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1	NI 15 15 15 15 15 15 14 10 018 NI 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 15 15 15 15 15 15 15 14 10 statisti NT 27 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: OFCL 4.2 17.0	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1 35.7	NI 15 15 15 15 15 15 14 10 018 NI 27 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7 8.5	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9 12.6	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 15 15 15 15 15 15 15 14 10 statisti NT 27 27 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: OFCL 4.2 17.0 33.4	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1 35.7 81.5	NI 15 15 15 15 15 15 14 10 018 NI 27 27 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7 8.5 13.9	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9 12.6 22.6	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 15 15 15 15 15 15 15 14 10 statisti NT 27 27 27 27 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: 0FCL 4.2 17.0 33.4 47.1	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1 35.7 81.5 138.1	NI 15 15 15 15 15 14 10 018 NI 27 27 27 27 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7 8.5 13.9 17.6	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9 12.6 22.6 30.5	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 15 15 15 15 15 15 15 14 10 statisti NT 27 27 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: OFCL 4.2 17.0 33.4	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1 35.7 81.5	NI 15 15 15 15 15 15 14 10 018 NI 27 27 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7 8.5 13.9	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9 12.6 22.6	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048 072	NT 15 15 15 15 15 15 14 10 statisti NT 27 27 27 27 27 27 27 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: 0FCL 4.2 17.0 33.4 47.1 59.2 86.5	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1 35.7 81.5 138.1	NI 15 15 15 15 15 14 10 018 NI 27 27 27 27 27 27 27 27 27 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7 8.5 13.9 17.6 20.2 18.5	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9 12.6 22.6 30.5 34.5 35.5	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 15 15 15 15 15 15 14 10 statisti NT 27 27 27 27 27 27 27	OFCL 8.5 19.3 29.9 36.3 47.3 68.1 76.5 100.5 cs for: 0FCL 4.2 17.0 33.4 47.1 59.2	OCD5 8.5 29.0 62.5 106.8 169.6 328.9 456.7 459.7 EP1620 OCD5 5.1 35.7 81.5 138.1 197.3	NI 15 15 15 15 15 14 10 018 NI 27 27 27 27 27 27 27 27	0.0 4.7 9.7 15.3 22.0 18.3 9.6 7.5 OFCL 1.7 8.5 13.9 17.6 20.2	OCD5 0.0 3.9 6.9 9.5 11.1 11.3 15.9 19.8 NORN OCD5 1.9 12.6 22.6 30.5 34.5	

Verification	statisti	ics for:	EP172	018		OI	LIVIA
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	32	8.1	8.1		1.1		
012	32	17.5	28.6		8.0		
024	32	26.7	58.8	32	10.6		
036	32	32.3		32			
048			95.9	32	11.7		
	32	38.1 49.4	137.1		13.8		
072	32	49.4	227.3 323.0	32	15.0 16.2		
096	32						
120	32	61.3	441.3	32	16.2	21.1	
Verification	statist	ics for:	EP182	018			PAUL
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	14	10.5	10.5	14	0.4	0.4	
012	12	12.7	34.7	12	1.2		
024	10	22.3	79.0	10	4.5	4.6	
036	8		133.2	8	8.1		
048	6		188.9				
072			243.1				
096			-999.0				
120	0		-999.0				
Verification	statisti	ics for:	EP192	018		NINE	ETEEN
					OFCI.		ETEEN
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	STEEN
VT (h) 000	NT 4	OFCL 14.5	OCD5 14.5	NI 4	0.0	OCD5 0.0	STEEN
VT (h) 000 012	NT 4 2	OFCL 14.5 46.0	OCD5 14.5 49.0	NI 4 2	0.0 2.5	OCD5 0.0 4.0	STEEN
VT (h) 000 012 024	NT 4 2 0	OFCL 14.5 46.0 -999.0	OCD5 14.5 49.0 -999.0	NI 4 2 0	0.0 2.5 -999.0	OCD5 0.0 4.0 -999.0	STEEN
VT (h) 000 012 024 036	NT 4 2 0 0	OFCL 14.5 46.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0	NI 4 2 0 0	0.0 2.5 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0	CTEEN
VT (h) 000 012 024 036 048	NT 4 2 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0	NI 4 2 0 0 0	0.0 2.5 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0	TTEN
VT (h) 000 012 024 036 048 072	NT 4 2 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0	NI 4 2 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0	TEEN
VT (h) 000 012 024 036 048 072 096	NT 4 2 0 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0	NI 4 2 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0	TEEN
VT (h) 000 012 024 036 048 072	NT 4 2 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0	NI 4 2 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0	CTEEN
VT (h) 000 012 024 036 048 072 096	NT 4 2 0 0 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0	NI 4 2 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0	ROSA
VT (h) 000 012 024 036 048 072 096 120	NT 4 2 0 0 0 0 0 0 5 5 5 5 5	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202	NI 4 2 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification	NT 4 2 0 0 0 0 0 0 0 statist	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5	NI 4 2 0 0 0 0 0 0 0 0 0 2018	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000	NT 4 2 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 4 2 0 0 0 0 0 0 0 0 0 statists 30 28	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0 20.1	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0 28.8	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0 8.2	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 9.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 4 2 0 0 0 0 0 0 0 0 0 0 5tatists 30 28 26	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0 20.1 31.5	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0 28.8 72.6	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0 8.2 11.9	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 9.9 17.3	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0 20.1 31.5 43.4	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0 28.8 72.6 125.9	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0 8.2 11.9 11.9	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 9.9 17.3 19.2	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0 20.1 31.5 43.4 52.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0 28.8 72.6 125.9 181.9	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0 8.2 11.9 11.9 8.9	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 9.9 17.3 19.2 18.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048 072	NT 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0 20.1 31.5 43.4 52.0 64.2	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0 28.8 72.6 125.9 181.9 283.8	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0 8.2 11.9 11.9 11.9 8.9 14.2	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 9.9 17.3 19.2 18.9 24.4	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OFCL 14.5 46.0 -999.0 -999.0 -999.0 -999.0 -999.0 ics for: OFCL 4.0 20.1 31.5 43.4 52.0	OCD5 14.5 49.0 -999.0 -999.0 -999.0 -999.0 -999.0 EP202 OCD5 4.0 28.8 72.6 125.9 181.9	NI 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 2.5 -999.0 -999.0 -999.0 -999.0 -999.0 OFCL 1.0 8.2 11.9 11.9 8.9	OCD5 0.0 4.0 -999.0 -999.0 -999.0 -999.0 -999.0 -999.0 OCD5 1.3 9.9 17.3 19.2 18.9	

Verification	statist	ics for:	EP212	2018		SE	RGIO
VT (h)	NT	OFCI.	OCD5	NI	OFCL	OCD5	
000	54	8.1	7.8	54		1.9	
012	52		37.2	52	5.7	6.0	
024	50			50	9.0	10.3	
036	48	35.5		48			
048	46	47.9		46			
072	40		398.8	40	9.5		
096	38	107 0	485.9	38			
120	34	140.2	529.0	34	10.4	22.8	
Verification	statist	ics for:	EP222	2018			TARA
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	10	14.2		10	0.0		
012	8	23.2		8	6.2		
024	6	45.9		6			
036		69.6		4			
048			154.0	2			
072			-999.0				
096			-999.0		-999.0		
120			-999.0		-999.0		
120	Ũ		555.0	0		555.0	
Verification	statist	ics for:	EP232	2018		VIC	CENTE
Verification VT (h)	statist. NT		EP232 OCD5		OFCL		CENTE
			OCD5				CENTE
VT (h)	NT	OFCL 5.7	OCD5	NI 17	1.2	OCD5 1.2	CENTE
VT (h) 000	NT 17	OFCL 5.7 31.5	OCD5 5.7 43.7	NI 17 15	1.2 4.0	OCD5 1.2 7.4	CENTE
VT (h) 000 012	NT 17 15 13	OFCL 5.7 31.5	OCD5 5.7 43.7 100.9	NI 17 15 13	1.2 4.0 3.8	OCD5 1.2 7.4 11.4	CENTE
VT (h) 000 012 024	NT 17 15 13 11	OFCL 5.7 31.5 48.3 59.8	OCD5 5.7 43.7 100.9 153.0	NI 17 15 13 11	1.2 4.0 3.8 3.2	OCD5 1.2 7.4 11.4 14.5	CENTE
VT (h) 000 012 024 036	NT 17 15 13 11	OFCL 5.7 31.5 48.3 59.8 58.1	OCD5 5.7 43.7 100.9 153.0 207.0	NI 17 15 13 11 9	1.2 4.0 3.8 3.2 7.8	OCD5 1.2 7.4 11.4 14.5 19.8	CENTE
VT (h) 000 012 024 036 048 072	NT 17 15 13 11 9	OFCL 5.7 31.5 48.3 59.8 58.1	OCD5 5.7 43.7 100.9 153.0 207.0 320.6	NI 17 15 13 11 9 5	1.2 4.0 3.8 3.2 7.8	OCD5 1.2 7.4 11.4 14.5 19.8 3.4	CENTE
VT (h) 000 012 024 036 048	NT 17 15 13 11 9 5	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4	OCD5 5.7 43.7 100.9 153.0 207.0 320.6	NI 17 15 13 11 9 5 1	1.2 4.0 3.8 3.2 7.8 16.0	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0	CENTE
VT (h) 000 012 024 036 048 072 096	NT 17 13 11 9 5 1 0	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0	NI 17 15 13 11 9 5 1 0	1.2 4.0 3.8 3.2 7.8 16.0 30.0	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0	VILLA
VT (h) 000 012 024 036 048 072 096 120 Verification	NT 17 15 13 11 9 5 1 0 statist	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for:	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242	NI 17 15 13 11 9 5 1 0	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h)	NT 17 15 13 11 9 5 1 0 statist. NT	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: OFCL	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5	NI 17 15 13 11 9 5 1 0 2018 NI	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000	NT 17 15 13 11 9 5 1 0 statist NT 17	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: OFCL 3.7	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3	NI 17 15 13 11 9 5 1 0 2018 NI 17	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 W OCD5 4.1	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012	NT 17 15 13 11 9 5 1 0 statist NT 17 15	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: 0FCL 3.7 18.1	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3 36.2	NI 17 15 13 11 9 5 1 0 2018 NI 17 15	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4 9.3	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 W OCD5 4.1 17.5	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024	NT 17 15 13 11 9 5 1 0 statist NT 17 15 13	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: 0FCL 3.7 18.1 31.2	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3 36.2 69.5	NI 17 15 13 11 9 5 1 0 2018 NI 17 15 13	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4 9.3 17.3	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 W OCD5 4.1 17.5 29.3	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036	NT 17 15 13 11 9 5 1 0 statist NT 17 15 13 11	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: OFCL 3.7 18.1 31.2 48.1	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3 36.2 69.5 107.3	NI 17 15 13 11 9 5 1 0 2018 NI 17 15 13 11	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4 9.3 17.3 20.0	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 OCD5 4.1 17.5 29.3 37.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 17 15 13 11 9 5 1 0 statist NT 17 15 13 11 9	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: OFCL 3.7 18.1 31.2 48.1 67.0	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3 36.2 69.5 107.3 176.0	NI 17 15 13 11 9 5 1 0 2018 NI 17 15 13 11 9	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4 9.3 17.3 20.0 18.3	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 OCD5 4.1 17.5 29.3 37.9 45.9	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048 072	NT 17 15 13 11 9 5 1 0 statist. NT 17 15 13 11 9 5	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: OFCL 3.7 18.1 31.2 48.1 67.0 168.8	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3 36.2 69.5 107.3 176.0 357.7	NI 17 15 13 11 9 5 1 0 2018 NI 17 15 13 11 9 5	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4 9.3 17.3 20.0 18.3 16.0	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 OCD5 4.1 17.5 29.3 37.9 45.9 41.8	
VT (h) 000 012 024 036 048 072 096 120 Verification VT (h) 000 012 024 036 048	NT 17 15 13 11 9 5 1 0 statist NT 17 15 13 11 9	OFCL 5.7 31.5 48.3 59.8 58.1 101.2 117.4 -999.0 ics for: OFCL 3.7 18.1 31.2 48.1 67.0 168.8	OCD5 5.7 43.7 100.9 153.0 207.0 320.6 366.0 -999.0 EP242 OCD5 2.3 36.2 69.5 107.3 176.0	NI 17 15 13 11 9 5 1 0 2018 NI 17 15 13 11 9	1.2 4.0 3.8 3.2 7.8 16.0 30.0 -999.0 OFCL 4.4 9.3 17.3 20.0 18.3	OCD5 1.2 7.4 11.4 14.5 19.8 3.4 2.0 -999.0 OCD5 4.1 17.5 29.3 37.9 45.9	

Verification	statist	ics for:	EP25	2018		XA	VIER
VT (h)	NT	OFCL	OCD5	NI	OFCL	OCD5	
000	13	6.0	6.0	13	3.1	3.1	
012	11	29.8	33.7	11	5.9	5.4	
024	9	56.5	71.0	9	7.8	6.4	
036	7	80.1	96.6	7	8.6	7.3	
048	5	87.9	122.9	5	9.0	6.6	
072	1	93.4	55.8	1	10.0	1.0	
096	0	-999.0	-999.0	0	-999.0	-999.0	
120	0	-999.0	-999.0	0	-999.0	-999.0	

71

 Table 12a.
 Verification of 48-h probabilistic genesis forecasts for the Atlantic basin in 2018.

Atlantic Basin Genesis Forecast Reliability Table					
Forecast Likelihood (%)	Verifying Genesis Occurrence Rate (%)	Number of Forecasts			
0	6	291			
10	23	96			
20	33	63			
30	53	38			
40	75	27			
50	28	20			
60	80	11			
70	89	17			
80	100	8			
90	100	9			
100	100	1			

Table 12b.Verification of 48-h probabilistic genesis forecasts for the eastern North Pacific
basin in 2018.

Eastern North Pacific Basin Genesis Forecast Reliability Table					
Forecast Likelihood (%)	Verifying Genesis Occurrence Rate (%)	Number of Forecasts			
0	1	339			
10	13	165			
20	20	97			
30	23	53			
40	71	28			
50	74	19			
60	82	33			
70	87	30			
80	81	16			
90	95	19			
100	100	5			

1

F

 Table 13a.
 Verification of 120-h probabilistic genesis forecasts for the Atlantic basin in 2018.

Atlantic Basin Genesis Forecast Reliability Table					
Forecast Likelihood (%)	Verifying Genesis Occurrence Rate (%)	Number of Forecasts			
0	0	40			
10	32	166			
20	44	108			
30	51	61			
40	58	45			
50	66	59			
60	76	25			
70	67	24			
80	91	11			
90	97	36			
100	100	1			

Table 13b.Verification of 120-h probabilistic genesis forecasts for the eastern North Pacific
basin in 2018.

Eastern North Pacific Basin Genesis Forecast Reliability Table					
Forecast Likelihood (%)	Verifying Genesis Occurrence Rate (%)	Number of Forecasts			
0	0	20			
10	19	163			
20	31	137			
30	38	126			
40	38	90			
50	71	48			
60	69	48			
70	81	31			
80	94	32			
90	100	96			
100	100	13			

Table 14.NHC forecast cone circle radii (n mi) for 2019. Change from 2018 values
expressed in n mi and percent are given in parentheses.

Track Forecast Cone Two-Thirds Probability Circles (n mi)					
Forecast Period (h)	Atlantic Basin	Eastern North Pacific Basin			
3	16 (0: 0%)	16 (0: 0%)			
12	26 (0: 0%)	25 (0: 0%)			
24	41 (-2: -5%)	38 (-1: -3%)			
36	54 (-2: -4%)	48 (-2: -4%)			
48	68 (-6: -8%)	62 (-4: -6%)			
72	102 (-1: -1%)	88 (-6: -6%)			
96	151 (0: 0%)	115 (-10: -8%)			
120	198 (0: 0%)	145 (-17: -10%)			

Table 15.Composition of NHC consensus models for 2019. It is intended that TVCA would
be the primary consensus aids for the Atlantic basin and TVCE would be primary
for the eastern Pacific.

NHC Consensus Model Definitions For 2019					
Model ID	Parameter	Туре	Members		
GFEX	Track	Fixed	GFSI EMXI		
ICON	Intensity	Fixed	DSHP LGEM HWFI CTCI HMNI		
TVCA**	Track	Variable	GFSI EGRI HWFI EMXI CTCI EMNI		
TVCE	Track	Variable	GFSI EGRI HWFI EMXI CTCI HMNI EMNI		
TVDG	Track	Variable	GFSI (double weight) EMXI (double weight) EGRI (double weight) CTCI HWFI		
TVCX	Track	Variable	EMXI (double weight) GFSI EGRI HWFI		
IVCN	Intensity	Variable	DSHP LGEM HWFI CTCI HMNI		
IVDR	Intensity	Variable	CTCI (double weight) HWFI (double weight) HMNI (double weight) GFSI DSHP LGEM		

** TVCN will continue to be computed and will have the same composition as TVCA. GPCE circles will continue to be based on TVCN.

LIST OF FIGURES

- 1. NHC official and CLIPER5 (OCD5) Atlantic basin average track errors for 2018 (solid lines) and 2013-2017 (dashed lines).
- 2. Number of NHC official forecasts for the Atlantic basin from 1990-2018.
- 3. Recent trends in NHC official track forecast error (top) and skill (bottom) for the Atlantic basin.
- 4. 2014-18 NHC official track forecast error binned by initial intensity for the Atlantic basin. Weak tropical storms are in the 35-45 kt range and strong tropical storms are in the 50-60 kt range.
- 5. Homogenous comparison for selected Atlantic basin early track guidance models for 2018. This verification includes only those models that were available at least 2/3 of the time (see text).
- 6. Homogenous comparison of the primary Atlantic basin track consensus models for 2016-2018.
- 7. Homogenous comparison of the primary Atlantic basin track consensus models for 2018.
- 8. NHC official and Decay-SHIFOR5 (OCD5) Atlantic basin average intensity errors for 2018 (solid lines) and 2013-2017 (dashed lines).
- 9. Recent trends in NHC official intensity forecast error (top) and skill (bottom) for the Atlantic basin.
- 10. Homogenous comparison for selected Atlantic basin early intensity guidance models for 2018. This verification includes only those models that were available at least 2/3 of the time (see text).
- 11. Homogenous comparison for selected Atlantic basin early intensity guidance models for 2016-18.
- 12. 2018 NHC official track forecasts errors by tropical cyclone.
- 13. 2018 NHC official intensity forecasts errors by tropical cyclone.
- 14. NHC official and CLIPER5 (OCD5) eastern North Pacific basin average track errors for 2018 (solid lines) and 2013-2017 (dashed lines).
- 15. Number of forecasts for the eastern North Pacific basin from 1990-2018.
- 16. Recent trends in NHC official track forecast error (top) and skill (bottom) for the eastern North Pacific basin.
- 17. Homogenous comparison for selected eastern North Pacific early track models for 2018. This verification includes only those models that were available at least 2/3 of the time (see text).
- 18. Homogenous comparison of the primary eastern North Pacific basin track consensus models for 2016-2018.
- 19. Homogenous comparison of the primary eastern North Pacific basin track consensus models for 2018.

- 20. NHC official and Decay-SHIFOR5 (OCD5) eastern North Pacific basin average intensity errors for 2018 (solid lines) and 2013-2017 (dashed lines).
- 21. Recent trends in NHC official intensity forecast error (top) and skill (bottom) for the eastern North Pacific basin.
- 22. Homogenous comparison for selected eastern North Pacific basin early intensity guidance models for 2018. This verification includes only those models that were available at least 2/3 of the time (see text).
- 23. Homogenous comparison for selected eastern North Pacific basin early intensity guidance models for 2016-18.
- 24. Reliability diagram for Atlantic (top) and eastern North Pacific (bottom) probabilistic tropical cyclogenesis 48-h forecasts for 2018. The solid lines indicate the relationship between the forecasts and verifying genesis percentages, with perfect reliability indicated by the thin diagonal black line. The dashed lines indicate how the forecasts were distributed among the possible forecast values.
- 25. As described for Fig. 24, but for 120-h forecasts.

Figure 1. NHC official and CLIPER5 (OCD5) Atlantic basin average track errors for 2018 (solid lines) and 2013-2017 (dashed lines).

Figure 2. Number of NHC official forecasts for the Atlantic basin stratified by year.

Figure 3. Recent trends in NHC official track forecast error (top) and skill (bottom) for the Atlantic basin.

Figure 4. 2014-18 NHC official track forecast error binned by initial intensity for the Atlantic basin. Weak tropical storms are in the 35-45 kt range and strong tropical storms are in the 50-60 kt range.

Figure 5. Homogenous comparison for selected Atlantic basin early track models for 2018. This verification includes only those models that were available at least 2/3 of the time (see text).

Figure 6. Homogenous comparison for selected Atlantic basin early track models for 2016-2018.

Figure 7. Homogenous comparison of the primary Atlantic basin track consensus models for 2018.

Figure 8. NHC official and Decay-SHIFOR5 (OCD5) Atlantic basin average intensity errors for 2018 (solid lines) and 2013-2017 (dashed lines).

Figure 9. Recent trends in NHC official intensity forecast error (top) and skill (bottom) for the Atlantic basin.

Figure 10. Homogenous comparison for selected Atlantic basin early intensity guidance models for 2018.

Figure 11. Homogenous comparison for selected Atlantic basin early intensity guidance models for 2016-2018.

Figure 12. 2018 NHC official track errors by tropical cyclone.

Figure 13. 2018 NHC official intensity errors by tropical cyclone.

Figure 14. NHC official and CLIPER5 (OCD5) eastern North Pacific basin average track errors for 2018 (solid lines) and 2013-2017 (dashed lines).

Figure 15. Number of NHC official forecasts for the eastern North Pacific basin stratified by year.

Figure 16. Recent trends in NHC official track forecast error (top) and skill (bottom) for the eastern North Pacific basin.

Figure 17. Homogenous comparison for selected eastern North Pacific early track models for 2018. This verification includes only those models that were available at least 2/3 of the time (see text).

Figure 18. Homogenous comparison for selected eastern North Pacific basin early track models for 2016-2018.

Figure 19. Homogenous comparison of the primary eastern North Pacific basin track consensus models for 2018.

Figure 20. NHC official and Decay-SHIFOR5 (OCD5) eastern North Pacific basin average intensity errors for 2018 (solid lines) and 2013-2017 (dashed lines).

Figure 21. Recent trends in NHC official intensity forecast error (top) and skill (bottom) for the eastern North Pacific basin.

Figure 22. Homogenous comparison for selected eastern North Pacific basin early intensity guidance models for 2018.

Figure 23. Homogenous comparison for selected eastern North Pacific basin early intensity guidance models for 2016-2018.

Figure 24. Reliability diagram for Atlantic (top) and eastern North Pacific (bottom) probabilistic tropical cyclogenesis 48-h forecasts for 2018. The solid lines indicate the relationship between the forecasts and verifying genesis percentages, with perfect reliability indicated by the thin diagonal black line. The dashed lines indicate how the forecasts were distributed among the possible forecast values.

Figure 25. As described for Fig. 24, except for 120-h forecasts.