Unit 3: Understanding Forecast Uncertainty

Unit 3 Objectives

At the end of this unit, you should be able to:

1. Explain the meaning of "uncertainty" as it relates to NWS forecasts.
2. Explain what " 59% chance of TS-force winds" (or similar probability) means.
3. Discuss the challenges inherent to rainfall and inland flooding forecasting.

Forecasts are Improving, But Not Perfect

NHC 5-Year Averages: Track Errors

Track Errors

- Increase 40 miles (35 nautical miles $(n m)$) per day

Track Errors - All NHC Forecasts

All NHC Forecasts

- Track errors increase about 3540 miles per day

Track Errors - Weak TS

Weak Tropical Storms

- Track errors increase about 40-45 miles per day

Track Errors - Hurricane

Hurricanes

- Track errors increase about 25-30 miles per day

NHC 5-Year Averages: Intensity Errors

Intensity Errors

- Increase the first 2-3 days, then level off

Intensity Errors Over 5 Days

Intensity Errors

- Increase the first 2-3 days, then level off

Intensity Error Over 48 Hours

Intensity Errors

- The 24- and 48-hour NHC intensity forecasts are, on average, off by one Saffir-Simpson category

Rapid Intensification

Where were these Category 5 Hurricanes three days before landfall?

- Labor Day (1935)
- Camille (1969)
- Andrew (1992)
- Michael (2018)

Forecast Error Cone - Probable Track, Watches, Warnings

Don't Focus on the Skinny Black Line

Hurricane Charley

Forecast vs. Observed

Would Alternate Scenarios Help?

How Are WSP Generated?

More scenarios

1,000 realistic alternative scenarios are generated

- Official NHC forecast
- Historical track and intensity forecast errors

Weakening over land
Track model spread

- Forecast track errors are correlated to the spread of model guidance

How Are WSP Generated? 2

How Are WSP Generated? 3

C 59%

New York City, NY $590 / 1,000=59 \%$ chance of TS force winds

What Does 59\% Chance Mean?

5-Day Cumulative Graphic: TS-Force

Location-specific Probabilities

- Tropical Storm-Force
- 58 mph ("Strong" Tropical Storm)
- Hurricane-Force

5-Day Cumulative Graphic: 58 mph

Location-specific Probabilities

- Tropical Storm-Force
- 58 mph ("Strong" Tropical Storm)
- Hurricane-Force

5-Day Cumulative Graphic: HurricaneForce

Location-specific Probabilities

- Tropical Storm-Force
- 58 mph ("Strong" Tropical Storm)
- Hurricane-Force

Earliest Reasonable Onset of TS Winds

Earliest Reasonable

- 10\% chance of onset (Most conservative timing)
- Black Contours: Arrival time of TS winds
- Color fill: 5-day cumulative TS probabilities

Earliest Reasonable Arrival Time of Tropical-Storm-Force Winds

Most Likely Onset of TS Winds

Most Likely

- 50\% chance of onset (Equally likely to occur before as after)
- Black Contours: Arrival time of TS winds
- Color fill: 5-day cumulative TS probabilities

Wind Speed Probabilities - Summary

- NHC's forecasts are improving, but errors remain
- Error cone is not the cure for skinny black line
- Wind speed probabilities
- Likelihood of tropical storm and hurricane winds
- Onset timing of wind hazards
- Incorporates track, intensity, and size uncertainty
- Includes weakening due to land
- Provides an assessment of wind timing and threat that accounts for NHC forecast errors

70世

Rainfall Predictability Challenges

- Small, less organized storms can produce localized extreme rainfall maxima
- Slow storm motion remains a factor
- Less lead time and placement can make a big difference in impacts
- Extreme events at this scale can be more obvious at longer lead times, but remember placement error

Placement of Persistent Rain Bands?

Storm-Total Rainfall

TS Cindy (2017) Forecast Challenge

Messaging Issues

Extreme rain gradients in banding in slow-moving, disorganized storms present messaging issues.

5-Day Rainfall Totals

Rainfall Forecast Interpretation

Probabilistic Rainfall Forecasts

In Percentiles

\square
20.00
-15.00
-10.00
-7.00
-5.00
4.00
3.00
2.50
2
-1.00
-1.75
-1.50
-1.25
-0.75
-0.50
-0.25
-0.10
-0.01

Rainfall Probability

Expect at least this much rainfall
$50^{\text {th }}$ Percentile Best guess, or most likely, rainfall

90 th Percentile Reasonable high-end scenario

Flooding Forecast Considerations

Ground State (How dry is it?)
Past Model Performances
Rainfall (Gauge-based or Radar-based?)
Rainfall Variability

- Space
- Time

HYDROGRAPH

HYDROGRAPH

Rainfall Variability - Left Shift Hydrograph

HYDROGRAPH

HYDROGRAPH

Rainfall Variability - Right Shift Hydrograph

Ensemble Forecasting

NAEFS River Ensemble Forecast on Sat. Aug 28; 4-5 days before Ida's remnants arrived
(Recreated from the official product)

River	City, ST	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 0 \%}$	$\mathbf{9 0 \%}$
Lehigh River	Lehighton, PA	12.2	8.7	6.6	5.2	5.1
Delaware River	Tocks Island, NJ	25.2	15.1	11.3	7.8	7.7
Delaware River	Riegelsville, PA	28.1	21.4	13.6	8.4	8.2
Delaware River	Washington Xing, NJ	19.1	13.8	8.7	3.6	3.1
Schuylkill River	Pottstown, PA	18.1	11.7	7.7	4.3	3.8
Schuylkill River	Philadelphia, PA	13.1	10.3	8.7	7.3	6.6
Brandywine Creek	Chadds Ford, PA	13.0	7.6	5.2	3.9	2.7
Neshaminy Creek	Langhorne, PA	16.2	8.3	5.6	3.7	2.6
Conococheauge Creek	Fairview, MD	15.3	10.0	6.2	3.6	2.5
Potomac River	Shepherdstown, WV	24.1	14.7	9.6	5.7	3.9
Monocacy River	Frederick, MD	21.1	9.3	6.9	4.8	2.7

Recurrence Intervals

"100-Year Flood- Recurrence Interval"

A flood that has a 1 in 100, or a 1\% chance of occurring in any given year

"500-Year Flood- Recurrence Interval"

Flood that has 1 in 500, or a 0.2% chance of occurring in any given year

- Does NOT mean a 100- or 500-year flood occurs once every 100 or 500 years
- Technical term: Annual Exceedance Probability (AEP)
- Also, a 100-year rainfall event $=100$-year flood

Questions/Comments?

