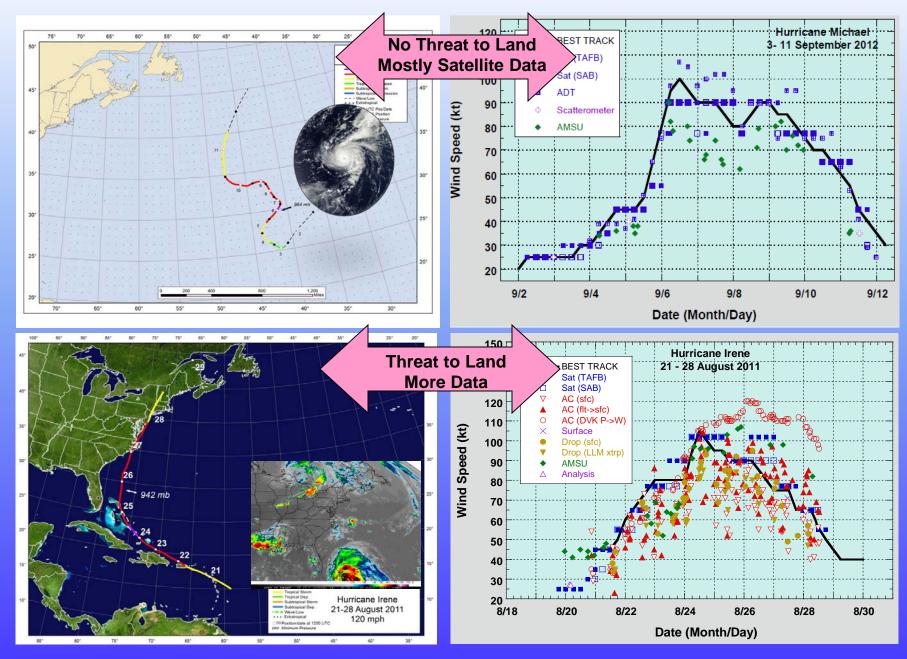


Tropical Cyclone Intensity Forecasting: Still a Challenging Proposition

Daniel Brown National Hurricane Center April 20, 2017

What do we mean by Intensity?


Maximum sustained winds:

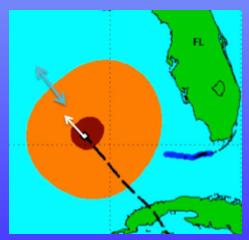
Strongest wind speed <u>averaged during</u> <u>a 1-minute period</u> at an altitude of <u>10</u> <u>m (33 ft)</u>, associated with the circulation of the tropical cyclone at a given point in time

- Central pressure is correlated with intensity, but pressurewind relationship has variability
- Max wind speed usually estimated, rarely directly measured

More Data for Land-Threatening TCs

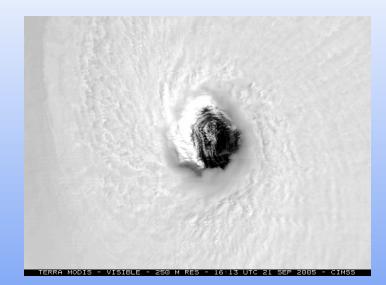
Determine the Official Intensity

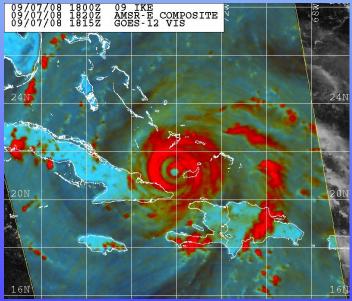
We can only sample a part of ach observation has strengths and We want a value that is representative of the TC's circu	weaknesses
• OFCL at 0600 UTC:	110 kt
 Drop sfc-adjusted MBL: 	111 kt
 Drop sfc-adjusted WL150: 	118 kt
 Dropsonde surface value: 	111 kt
 Recon sfc-adjusted flight-level wind: 	119 kt
 SFMR surface wind 	103 kt
Objective ADT:	130 kt
 Subjective Dvorak: 	115 / 102 kt


Since there are insufficient observations of surface wind in tropical cyclones:

- Intensity estimates are believed to be good to within 10%
- Tropical storm wind radii (size estimate) are believed to be good to within 25% and hurricane wind radii to within 40%

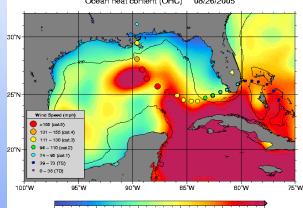
Hurricane Arthur (2014) near its estimated peak intensity of 100 mph

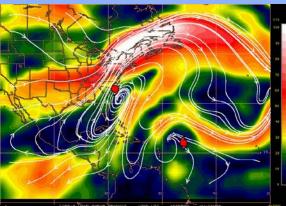

A 100 mph hurricane could have maximum winds of 90 mph or 110 mph.

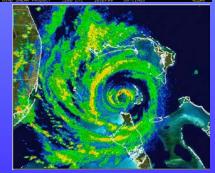


Intensity Forecast Considerations

- Much more complex forecast problem than track
 - Involves interactions between thunderstorms in the core, the environment, and atmosphere-ocean interactions
- Important factors
 - Track
 - Wind, temperature, and moisture patterns in the core and the near environment
 - Internal processes, such as eyewall replacement cycles, that are poorly understood




Factors Affecting Tropical Cyclone Intensity


- Upper Ocean Temperatures More heat favors a stronger storm
- Interaction with Land/Topography More land increases weakening
- Vertical Wind Shear Shear limits strengthening
- Moisture in Storm Environment Dry air can limit strengthening

- Structural Changes, Eyewall Replacement Difficult to forecast and not straightforward
- Interactions with other weather systems

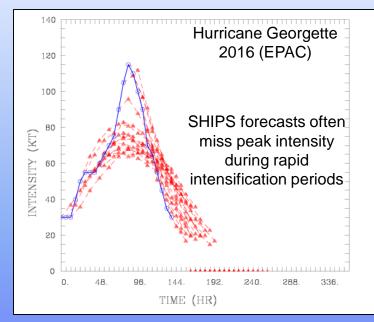
Tropical Cyclone Intensity Statistical Models

Decay SHIFOR

- Statistical Hurricane Intensity FORecast with inland decay.

- Based on historical information climatology and persistence (uses CLIPER track).
- Baseline for <u>skill</u> of intensity forecasts

Tropical Cyclone Intensity Statistical-Dynamical Models


• SHIPS and DSHIPS:

- Statistical Hurricane Intensity
 Prediction Scheme:
 - Based on climatology, persistence, and <u>statistical relationships</u> to current and forecast environmental conditions (with inland decay applied in DSHIPS)

• LGEM

– Logistic Growth Equation Model:

- Uses same inputs as SHIPS, but environmental conditions are variable over the length of the forecast (SHIPS averages over the entire forecast)
- More sensitive to environmental changes at the end of the forecast, but also more sensitive to track forecast errors.

							ORECAST		*				
	1		AVAIL				ILABLE		*				
	1		ALBERT	D ALO	12012	05/21	12 12	UTC	*				
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
V (KT) NO LAND	35	36	37	39	39	39	36	29	25	22	19	16	DIS
V (KT) LAND	35	36	37	39	39	39	36	29	25	22	19	16	DIS
V (KT) LGE mod	35	35	35	35	35	34	33	31	30	32	35	38	DIS
Storm Type	EXTP	EXTP	EXTP	EXTP	EXTP	EXTP	EXTP	EXTP	EXTP	EXTP	EXTP	SUBT	N/A
SHEAR (KT)	39	40	42	45	46	60	57	51	23	7	10	6	N/A
SHEAR ADJ (KT)	-6	0	-1	-2	-7	-11	-17	-7	-4	1	-2	2	N/A
SHEAR DIR	259	261	252	247	243	250	251	261	262	301	105	12	N/A
SST (C)	25.3	25.3	25.2	24.8	24.0	22.7	22.6	19.9	19.5	15.0	11.5	8.3	N/A
POT. INT. (KT)	106	107	107	104	99	92	92	80	79	70	67	65	N/A
ADJ. POT. INT.	90	92	93	92	88	83	82	74	72	67	65	64	N/A
200 MB T (C)	-54.1	-53.5	-54.6	-55.0	-55.4	-56.2	-56.7	-56.7	-57.9	-59.0	-60.2	-60.6	N/A
TH_E DEV (C)	4	6	7	5	4	4	2	2	0	0	0	0	N/A
700-500 MB RH	44	44	47	54	59	60	61	49	43	43	42	43	N/A
GFS VTEX (KT)	7	7	6	7	6	5	3	2	LOST	LOST	LOST	LOST	LOST
850 MB ENV VOR	68	73	58	57	41	40	35	0	-31	-85	-73	-91	N/A
200 MB DIV	19	-2	18	27	38	62	60	34	0	-69	-52	-61	N/A
700-850 TADV	-7	-5	0	-8	-5	17	-1	6	-5	3	0	16	N/A
LAND (KM)	215	273	282	281	268	325	512	483	412	404	428	235	N/A
LAT (DEG N)	30.4	30.8	31.1	31.9	32.6	34.4	36.6	38.4	40.1	41.6	43.0	44.6	N/A
LONG (DEG W)	79.1	78.3	77.5	76.4	75.3	72.6	69.7	66.7	63.5	60.2	56.5	52.7	N/A
STM SPEED (KT)	6	8	10	12	13	15	16	15	15	15	16	16	N/A
HEAT CONTENT	6	0	0	0	0	0	0	0	0	0	0	0	9999

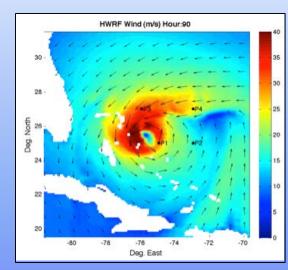
Example of SHIPS Model Output

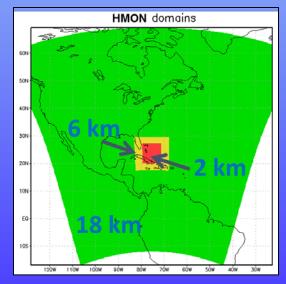
SHIPS Diagnostic File

* ATLANTIC SHIPS INTENSITY FORECAST *														
	* IR SAT DATA AVAILABLE, OHC AVAILABLE *									*				
	3	* HER/	1INE	ALØS	92016	09/01/	/16 00	0 UTC		*				
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120	
V (KT) NO LAND	50	54	58	63	67	75	82	82	80	76	61	52	44	
V (KT) LAND	50	54	58	63	67	56	37	30	31	28	DIS	DIS	DIS	
V (KT) LGEM	50	55	60	65	70	60	38	31	28	30	26	24	25	
Storm Type	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	
SHEAR (KT)	13	13	10	10	13	15	26	39	49	39	28	22	19	
SHEAR ADJ (KT)	-2	1	5	1	0	-2	2	0	0	-6	-4	-3	-4	
SHEAR DIR	301	303	285	258	236	257	238	241	229	216	247	251	240	
SST (C)	30.4	30.3	30.2	30.2	30.2	29.9	29.2	28.7	27.5	26.8	26.5	26.1	26.1	
POT. INT. (KT)	170	170	171	172	172	169	157	149	131	120	116	113	114	
ADJ. POT. INT.	157	153	153	154	153	150	139	129	109	97	93	92	93	
200 MB T (C)	-51.3	-51.7	-52.0	-51.5		-51.6	-50.9	-51.4	-51.9		-53.1	-53.1	-53.1	
200 MB VXT (C)	1.0	1.2	0.8	0.3	0.4	0.7	0.9	1.1	1.0	0.5	1.2	1.7	1.4	
TH_E DEV (C)	10	9	9	10	10	5	6	2	3	0	1	1	4	
700-500 MB RH	64	62	64	64	66	65	56	46	49	53	52	52	46	
MODEL VTX (KT)	17	18	20	22	23	25	28	27	28	30	22	20	17	
850 MB ENV VOR		28		45	53		44	9			9	17	16	
200 MB DIV	30	24		56	78		90	58	62	43	46	6	14	
700-850 TADV	7		16	14	12		21	42	9	-5	3	-2	-2	
LAND (KM)	440	414	334		112			-96	7	61	96	179	246	
LAT (DEG N)		26.2			28.7			35.0	37.1	38.4	38.7	39.0	39.1	
LONG(DEG W)								78.3	75.8		73.7	72.4		
STM SPEED (KT)		7	9	11	11			15	12	6	4	6	8	
HEAT CONTENT	38	35	37	41	37	43	37	47	1	41	1	2	1	
FORECAST TRAC		1 OFCI		INITIA							-		7	
T-12 MAX WIND				PRESSU							AN=618))		
GOES IR BRIGH														
% GOES IR PIX						KM RAD			l=65.0))				
PRELIM RI PRO	B (DV	.GE. 3	30 KT I	IN 24 H	HR):		14.8	3						

Tropical Cyclone Intensity Dynamical Models

- Dynamical Models:
 - HWRF, HMON, CTCI, GFS, ECMWF, UKMET
 - Based on the present and the future by solving the governing equations for the atmosphere (and ocean).
 - These models are of limited use, because of...
 - Sparse observations
 - Inadequate resolution; the HWRF and HMON our highestresolution operational hurricane models
 - Incomplete understanding and simulation of basic physics of intensity change
 - Problems with representation of shear




Tropical Cyclone Intensity Dynamical Hurricane Models

• HWRF

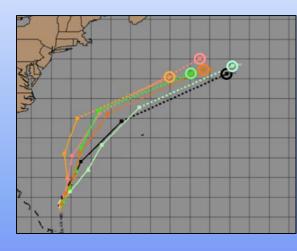
- Hurricane Weather Research and Forecast System
- Moving nests of 18, 6, and 2 km
- Coupled with the Princeton Ocean Model
- Uses GSI 3D VAR data assimilation
- **HMON** New for 2017 (Replaces GFDL)
 - Hurricanes in a Multi-scale Ocean coupled Non-hydrostatic model
 - Moving nests (same resolution as HWRF)
 - Will be coupled to other (ocean, waves, surge, inundation, etc.) models, but not in 2017
 - No data assimilation for 2017

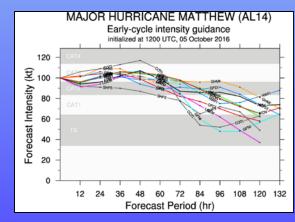
Tropical Cyclone Intensity Consensus and Ensemble Models

• ICON

 Consensus by averaging Decay-SHIPS, LGEM, and HWRF – All must be available

• IVCN


 Consensus that requires at least 2 of the following: Decay-SHIPS, LGEM, HWRF, and CTCI

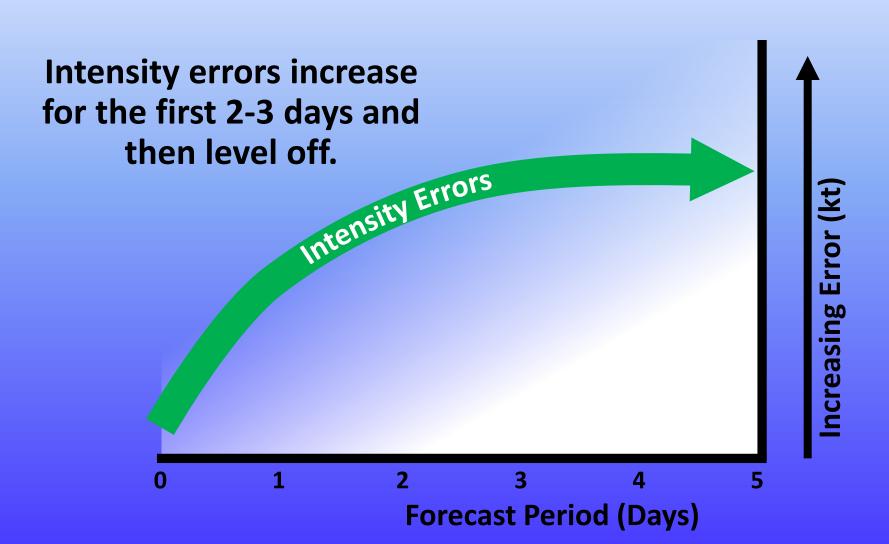

• Florida State Superensemble (FSSE)

 Consensus that uses dynamical models and the previous NHC forecast. FSSE learns from past performances of its members in a "training phase", then accounts for the model biases.

• HFIP Corrected Consensus Approach (HCCA)

FSSE approach adapted to NHC operations using a slightly different set of input models than FSSE.

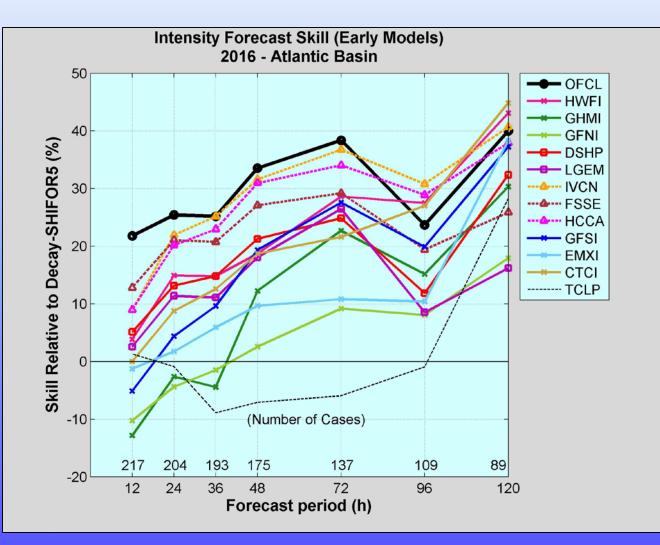
NHC Official Intensity Forecast



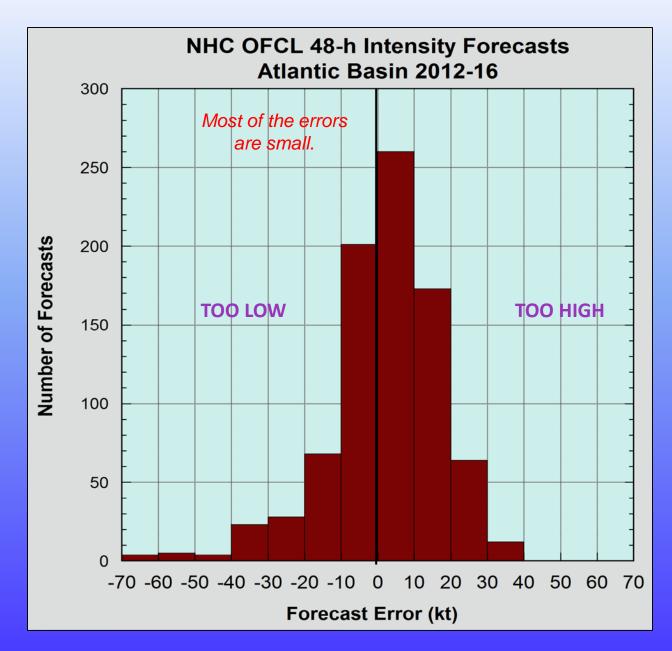
- Persistence is used quite a bit, especially for short-term forecasts.
- Obvious signs in the environment, i.e. cooler waters, increasing upperlevel winds, are taken into account.
- Tends to be conservative; <u>extreme</u> <u>events are almost never forecast</u>.
- For forecasts 24 h and beyond, the average error is roughly 1 SSHWS Category (about 15 kt)



Forecast Intensity Errors *NHC 5-Year Averages*


Forecast Intensity Errors *NHC 5-Year Averages*

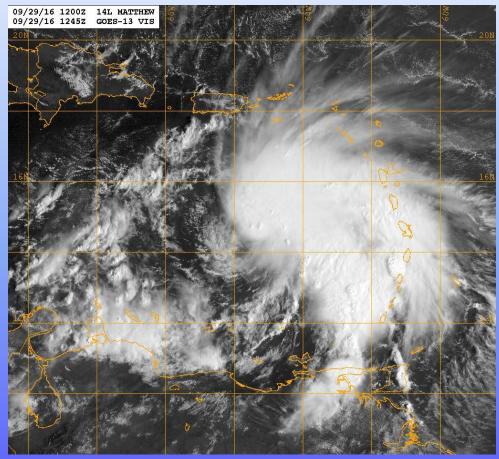
2016 Intensity Guidance

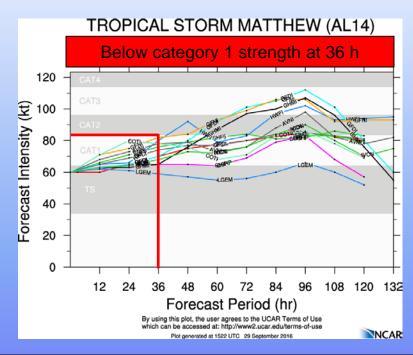


- Among the consensus aids, IVCN was a little better than HCCA and FSSE.
- DSHP and LGEM were skillful but not as good as consensus aids or HWFI, CTCI.
- GFSI was competitive at 48 h and beyond.
- GFNI, GHMI, and EMXI trailed.

Official forecasts skillful at all times, near or better than the top models.

NHC Intensity Error Distribution





Difficulty Predicting Rapid Changes in Intensity

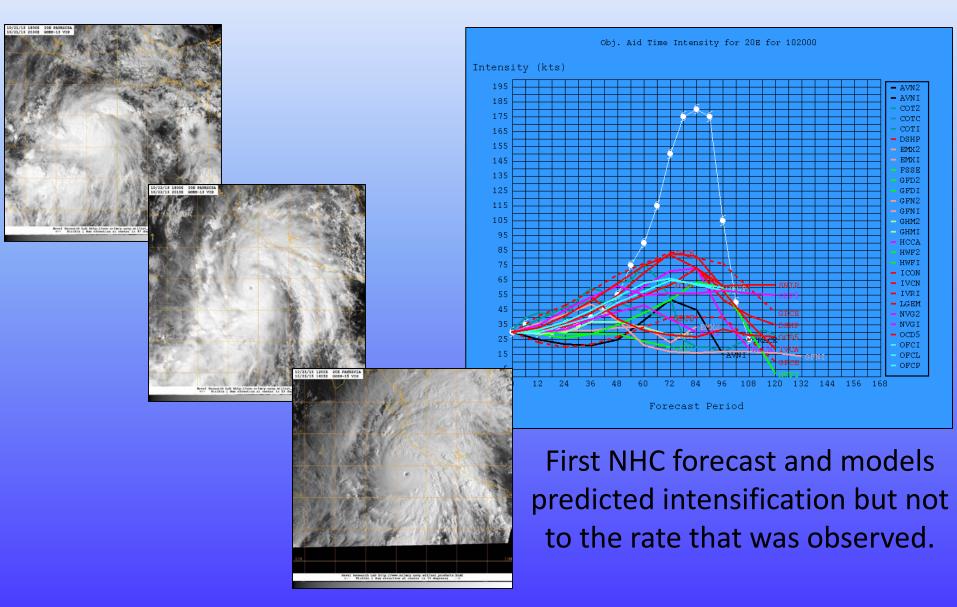
Tropical Storm Matthew – 70 mph 8:00 am September 29

NHC Discussion 11 am Thursday, September 29, 2016


The center of Matthew is exposed to the southwest of the deep convection due to moderate southwesterly shear. Given the current shear and structure of Matthew, only slight strengthening is predicted during the next 24 hours.

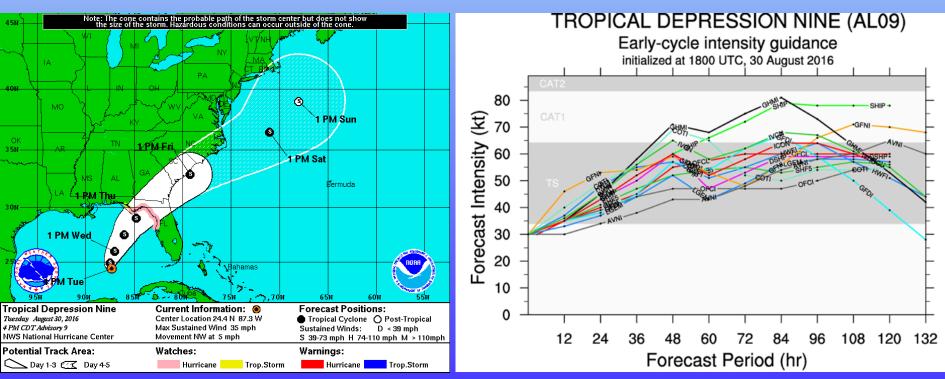
Forecaster Brown

Difficulty Predicting Rapid Changes in Intensity


Tropical Storm Matthew – 70 mph 8:00 am September 29

36 hours later Hurricane Matthew Category 5 – 165 mph

Patricia's Rapid Intensification Eastern Pacific - 2015



Hermine's Intensification

- NHC intensity forecasts were conservative during the first couple of days of the depression's existence.
- Hurricane Watch issued a little more than 48 h before the arrival of TS-force winds along the coast.

System was a 35-mph tropical depression at the time

Hermine's Intensification

Hermine strengthened from a 35-mph tropical depression to a 80 mph hurricane in a little more than 48 hours.

SHIPS Rapid Intensification Index a helpful tool?

Prob RI for 25kt/	24hr RI threshold=	35% is 3.0 times	<pre>sample mean (11.6%)</pre>
Prob RI for 30kt/	24hr RI threshold=	21% is 3.0 times	sample mean (7.2%)
Prob RI for 35kt/	24hr RI threshold=	12% is 2.9 times	sample mean (4.2%)
Prob RI for 40kt/	24hr RI threshold=	9% is 3.3 times	sample mean (2.8%)

RI Guidance

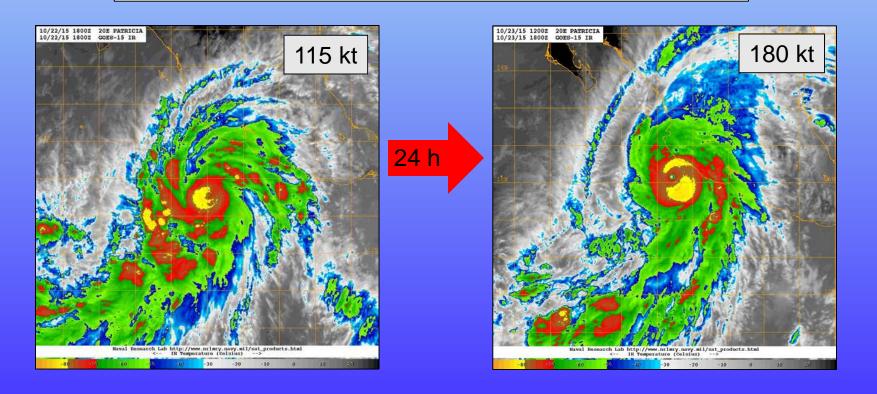
Hurricane Patricia (2015 - East Pacific)

	*		T DATA	AVAIL	ABLE,			ST AILABLE UTC		* * *			
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
V (KT) NO LAND	115	129	139	140	140	118	85	73	62	53	44	38	35
V (KT) LAND	115	129	139	140	140	88	47	33	29	27	27	27	27
V (KT) LGE mod	115	131	140	143	138	88	45	DIS	DIS	DIS	DIS	DIS	DIS
Storm Type	TROP	TROP	TROP	TROP	TROP	TROP	TROP	N/A	N/A	N/A	N/A	N/A	N/A

** 2013 E. Pacific RI INDEX EP202015 PATRICIA 10/22/15 18 UTC ** (30 KT OR MORE MAX WIND INCREASE IN NEXT 24 HR)

12 HR PERSISTENCE (KT): 40.0 Range:-22.0 to 38.5 Scaled/Wgted Val: 1.0/ 2.2 850-200 MB SHEAR (KT): 6.4 Range: 18.7 to 1.4 Scaled/Wgted Val: 0.7/ 1.0 POT = MPI-VMAX (KT): 54.3 Range: 40.3 to 141.7 Scaled/Wgted Val: 0.1/ 0.1 STD DEV OF IR BR TEMP: 4.4 Range: 38.9 to 2.4 Scaled/Wgted Val: 0.9/ 1.0 Heat content (KJ/cm2): 61.6 Range: 3.6 to 75.9 Scaled/Wgted Val: 0.8/ 0.7 D200 (10**7s-1): 104.2 Range:-11.0 to 135.3 Scaled/Wgted Val: 0.8/ 0.6 % area w/pixels <-30 C: 100.0 Range: 41.4 to 100.0 Scaled/Wgted Val: 1.0/ 0.5 850-700 MB REL HUM (%): 71.2 Range: 57.6 to 96.8 Scaled/Wgted Val: 0.3/ 0.0

Prob	of	RI	for	25	kt	RI	threshold=	87%	is	6.3	times	the	sample	mean(13.1%)
Prob	of	RI	for	30	kt	RI	threshold=	87%	is	11.5	times	the	sample	mean(8.7%)
Prob	of	RI	for	35	kt	RI	threshold=	87%	is	16.7	times	the	sample	mean(6.0%)



Rapid Intensification

Hurricane Patricia (2015 - East Pacific)

FORECAST POSITIONS AND MAX WINDS

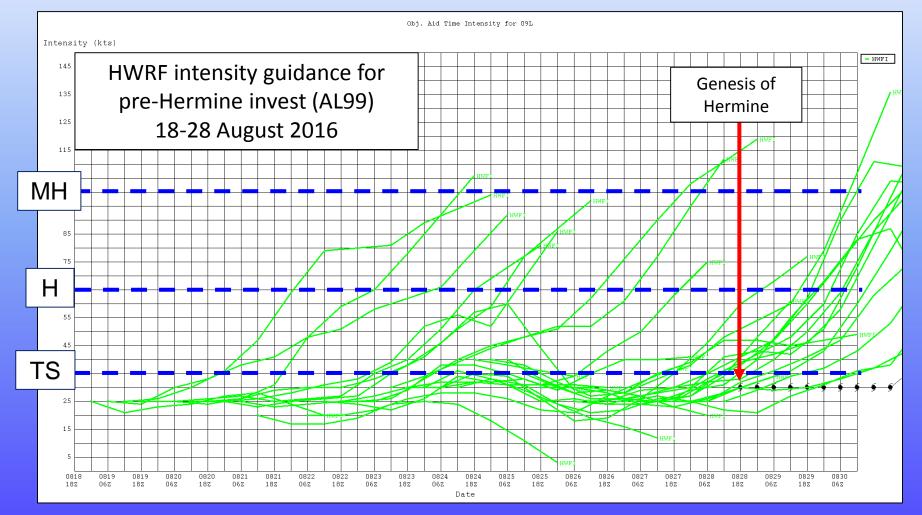
INIT	22/2100z	15.4N	104.6W	115	KT	130	MPH
12H	23/0600z	16.5N	105.6W	135	KT	155	MPH
24H	23/1800z	18.1N	105.9W	130	KT	150	MPH
36H	24/0600z	20.6N	104.9W	100	KT	115	MPHINLAND
48 H	24/1800z	23.3N	102.8W	50	KT	60	MPHINLAND
72H	25/1800z.	DISS	SIPATED				

Intensity Guidance for Invests

- Nearly all of the guidance models (SHIPS, LGEM, HWRF) assume that the system already has the structure of a tropical cyclone, which often leads to a high bias in the intensity guidance.
- Guidance can have lots of run to run variability
- SHIPS diagnostic information can be useful to determine large-scale environment, but forecast environmental conditions highly dependent on the forecast track which is often very uncertain before formation

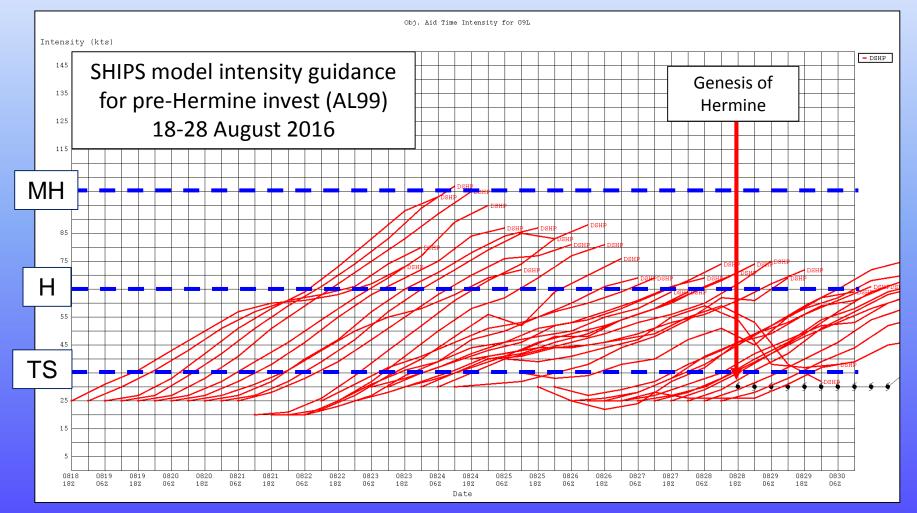
WEATHER AUGUST 24, 2016 9:28 AM

We've got Invest 99 problems and a hurricane could be one



Intensity Guidance for Invests

Intensity guidance for invests can also be unreliable!



Intensity Guidance for Invests

Intensity guidance for invests can also be unreliable!

Concluding Remarks

- Intensity forecasting is not as advanced as track forecasting.
- There is less skill for intensity forecasting than there is for track forecasting.
- Current guidance is provided mainly by DSHIPS, LGEM, HWRF, IVCN and more recently, FSSE, HCCA, and in 2017 HMON
- We still have significant difficulty in forecasting rapidly intensifying and rapidly weakening storms.
- The main hope for the future lies in improved dynamical models, coupled with enhanced observations and understanding of the hurricane's inner core. (HFIP)
- GOES-16 will provide new imagery and lightning data for dynamical and statistical-dynamical intensity models