

Unit 3: Understanding Forecast Uncertainty

Unit 3 Objectives

At the end of this unit, you should be able to:

- 1. Explain the meaning of "uncertainty" as it relates to NWS forecasts.
- 2. Explain what "59% chance of TS-force winds" (or similar probability) means.
- 3. Discuss the challenges inherent to rainfall and inland flooding forecasting.

Forecast Errors

Forecasts are Improving, But Not Perfect

NHC 5-Year Averages: Track Errors

Track Errors

 Increase 40 miles (35 nautical miles (nm)) per day

Track Errors – All NHC Forecasts

All NHC Forecasts

 Track errors increase about 35– 40 miles per day

Track Errors – Weak TS

Weak Tropical Storms

 Track errors increase about 40–45 miles per day

Track Errors – Hurricane

FEMA

Hurricanes

 Track errors increase about 25–30 miles per day

Intensity Errors Over 5 Days

Intensity Error Over 48 Hours Intensity Errors The 24- and 48-hour NHC intensity forecasts are, on average, off by one Saffir-Simpson category. 13 g

1

0

3

Forecast Period (Days)

2

4

11

Error (mph)

ncreasing

5

ΓA

Rapid Intensification

- Increase in the maximum sustained winds of at least 30 kts (35 mph) in a 24-hour period
- Where were these Category 5 hurricanes 3 days before landfall?
- Labor Day (1935)
- Camille (1969)
- Andrew (1992)
- Michael (2018)

Forecast Error Cone – Probable Track, Watches, Warnings

13

Don't Focus on the Skinny Black Line

Forecast vs. Observed

15

Hurricane Charley

Would Alternate Scenarios Help?

What Does 59% Chance Mean?

How Are WSP Generated? (1 of 3)

More scenarios

- 1,000 realistic alternative scenarios are generated
 - Official NHC forecast
 - Historical track and intensity forecast errors

Weakening over land

Track model spread

• Forecast track errors are correlated to the spread of model guidance

How Are WSP Generated? (2 of 3)

New York City, NY North Ca 590 of 1,000 scenarios produce tropical storm winds at that location. eorgia

How Are WSP Generated? (3 of 3)

59% **New York City, NY** dor th 590/1,000 = 59% outh Car chance of TS force winds

5-Day Cumulative Graphic: TS-Force

Location-specific Probabilities

- Tropical Storm-Force
- 58 mph ("Strong" Tropical Storm)
- Hurricane-Force

5-Day Cumulative Graphic: 58 mph

Location-specific Probabilities

- Tropical Storm-Force
- 58 mph ("Strong" Tropical Storm)
- Hurricane-Force

FEMA

5-Day Cumulative Graphic: Hurricane-Force

Location-specific Probabilities

- Tropical Storm-Force
- 58 mph ("Strong" Tropical Storm)
- Hurricane-Force

FEMA

Earliest Reasonable Onset of TS Winds

Earliest Reasonable

- 10% chance of onset (Most conservative timing)
- Black Contours: Arrival time of TS winds
- Color fill: 5-day cumulative TS probabilities

FEMA

Most Likely Onset of TS Winds

Most Likely

- 50% chance of onset (Equally likely to occur before as after)
- Black Contours: Arrival time of TS winds
- Color fill: 5-day cumulative TS probabilities

Wind Speed Probabilities – Summary

- NHC's forecasts are improving, but errors remain
 - Error cone is not the cure for skinny black line
- Wind speed probabilities
 - Likelihood of tropical storm and hurricane winds
 - Onset timing of wind hazards
- Incorporates track, intensity, and size uncertainty
 - Includes weakening due to land
- Provides an assessment of wind timing and threat that accounts for NHC forecast errors

Rainfall Predictability Challenges

- Small, less organized storms can produce localized extreme rainfall maxima.
- Slow storm motion remains a factor.
- Less lead time and placement can make a big difference in impacts.
- Extreme events at this scale can be more obvious at longer lead times, but remember placement error. 28

Placement of Persistent Rain Bands?

Storm-Total Rainfall

TS Cindy (2017) Forecast Challenge

Messaging Issues

Extreme rain gradients in banding in slow-moving, disorganized storms present messaging issues.

Rainfall Forecast Error

Lead Time

12 hours

36 hours

60 hours

84 hours

108 hours

Probabilistic Rainfall Forecasts

In Percentiles

90th

<u>10th Percentile</u> Expect at least this much rainfall

<u>50th Percentile</u> Best guess, or most likely, rainfall

<u>90th Percentile</u> Reasonable high-end scenario

Rainfall Probability

Flooding Forecast Considerations

Ensemble Forecasting

NAEFS River Ensemble Forecast on Sat. Aug 28, 2021; 4-5 days before Hurricane Ida's remnants arrived

(Recreated from the official product)

River	City, ST	10%	30%	50%	70%	90%
Lehigh River	Lehighton, PA	12.2	8.7	6.6	5.2	5.1
Delaware River	Tocks Island, NJ	25.2	15.1	11.3	7.8	7.7
Delaware River	Riegelsville, PA	28.1	21.4	13.6	8.4	8.2
Delaware River	Washington Xing, NJ	19.1	13.8	8.7	3.6	3.1
Schuylkill River	Pottstown, PA	18.1	11.7	7.7	4.3	3.8
Schuylkill River	Philadelphia, PA	13.1	10.3	8.7	7.3	6.6
Brandywine Creek	Chadds Ford, PA	13.0	7.6	5.2	3.9	2.7
Neshaminy Creek	Langhorne, PA	16.2	8.3	5.6	3.7	2.6
Conococheauge Creek	Fairview, MD	15.3	10.0	6.2	3.6	2.5
Potomac River	Shepherdstown, WV	24.1	14.7	9.6	5.7	3.9
Monocacy River	Frederick, MD	21.1	9.3	6.9	4.8	2.7

Recurrence Intervals

Technical term: Annual Exceedance Probability (AEP) A 100-year rainfall event ≠ 100-year flood Note:

500-year flooding event = 2% chance every year 1000-year flooding event = .1% chance every year

Questions/Comments?

