Probabilistic Prediction of Tropical Cyclone Rapid Intensification Using Passive Microwave Imagery

Christopher Rozoff (RAL/NCAR, Boulder, CO)

Christopher Velden and Sarah Griffin (CIMSS/UW-Madison, WI)

NOAA Collaborator: John Kaplan (HRD/NOAA) JHT Contacts: Beven, Brown, Roberts, and Landsea

Supported by NOAA JHT

Goal of work

- Improve probabilistic prediction of rapid intensification (RI)
 - SHIPS-RII, consensus of multi-model products
- **Approach:** Exploit passive microwave imagery to evince aspects of storm structure for improved statistical models.

Models for Atlantic and E. Pacific RI Prediction

- SHIPS-RII
- Logistic regression model
- Bayesian model
- Unweighted consensus of above three models

More info in Kaplan et al. 2010, Rozoff and Kossin 2011, Kaplan et al. 2015, Rozoff et al. 2015

Datasets

- SHIPS Developmental Dataset (1982 2016)
 - Available at CIRA:
 <u>http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp</u>
- Passive microwave imagery-based predictors derived from low-earth orbiting satellites.
 - We choose to focus on 1998 2016 for this study

Microwave data

Low-earth orbiting satellites providing passive microwave data 1998 – 2016.

	Low Frequence	ey Channel	Medium Free Channel	quency	High Frequ Channel	ency
Sensor	Frequency (GHz)	Footprint (km x km)	Frequency (GHz)	Footprint (km x km)	Frequency (GHz)	Footprint (km x km)
SSM/I	19.35	69 x 43	37.0	37 x 28	85.5	15 x 13
SSMI/S	19.35	73 x 47	37.0	41 x 31	91.655	14 x 13
TMI	19.35	30 x 18	37.0	16 x 9	85.5	7 x 5
AMSR-E	18.7	27 x 16	36.5	14 x 8	89.0	6 x 4
AMSR2	18.7	22 x 14	36.5	$12 \ge 7$	89.0	5 x 3
GMI	18.7	18 x 11	36.5	15 x 9	89.0	7 x 4

Microwave Data

Data calibration

Match SSMI, SSMIS, and TMI to GMI, AMSRE/2 18.7, 36.5, and 89.0 GHz

Histogram matching technique used (Jones et al. 2006; Rozoff et al. 2015)

Need matching overpasses

- AMSR-E TMI: 8 ATL matches within 5 min
- SSMIS GMI: 29 matches EP/ATL within 30 min
- SSM/I GMI: 8 EP matches within 30 min

Interpolate to common grid where swaths overlap.

- Common grid is the grid of the lower spatial resolution sensor.

TC-centric grids of MW data (1995-2016) Atlantic and Eastern Pacific basins

- Landmasked calibrated and uncalibrated data (18.7, 36.5, and 89 GHz)
- Native Cartesian grid and common polar grids, both centered on TCs.
 - + Polar grids 5-km & 2.5-km Δ r and 72/144 azimuthal points for 18.7-36.5 & 89-GHz
- 9489 Atlantic files; 9089 Eastern Pacific files

Choosing microwave data

- We consider microwave data within 6 h of a forecast
- In the case of multiple swaths available at a forecast, we choose data based on the following criteria:
 - $1. \ Most \ complete \ coverage \ of \ storm$
 - 2. Highest spatial resolution sensor chosen
 - 3. Most recent swath chosen
- Quick stats:
 - Swath is, on average, 2.9-h old
 - Data available $\sim 63\%$ of the time at synoptic forecast times (1998 2016)

Microwave-based predictors (Goal: Depict inner core structure)

- Class 1: SHIPS-like predictors (basic properties for fixed geometric regions)
- **Class 2:** Brightness temperature properties within an Objective Maximum Inner-Core Precipitation Annulus (MIPA) (defined in Rozoff et al. 2015)
- **Class 3:** ARCHER spiral and ring score properties
 - Comment: Was not found to produce adequate signal for probabilistic models
- Class 4: EOF analysis / Principal Components of microwave data
- Class 5: inertial stability
 - Comment: Determined not to be sufficiently independent from MW dataset

Classes 1, 2, and 4 predictors were found useful in this work.

MIPA-based predictors

A few notes: 1. ARCHER provides center estimate.

2. Inspired by the work Jiang et al. (2011), MIPA criteria are found as follows:

- 36.5 GHz: % area covered by PCT < 270 Kor where BT (v) $\ge 265 \text{ K}$ and PCT $\ge 270 \text{ K}$ maximized.

3. For other channels:
18.7 GHz: % area
where BT (v) > 245 K
and BT (h) > 215 K
89 GHz: % area where
PCT < 250 K is
maximized

Hurricane Rita (2005) example

Time progresses downward

Skillful EOFs/Principal Components

Note:

All microwave images in this analysis were rotated such that the storm motion vector is pointing north prior to conducting the EOF analysis.

37-GHz (H pol) EOF 5

89-GHz (H pol) EOF 9

Atlantic Predictors (non-MW)

Predictor	Bayesian	Logistic	SHIPS-RII
PER (12-h intensity change observed for the preceding 12 h)	x	X	х
RSST (Reynolds sea surface temperature)		x	
RHCN (Reynolds heat content)			х
U200 (200-hPa zonal wind, $r = 200 - 800$ km)	x		
RHLO (850-700-hPa relative humidity, $r = 200 - 800$ km)			х
RHMD (700-500-hPa relative humidity, $r = 200 - 800$ km)		X	
D200 (200-hPa divergence, $r = 0 - 1000$ km)			х
EPSS (The θ_e difference between parcel/environment, $r = 200 - 800$ km)	X		
POT (Departure from the storm's potential intensity)	x	X	х
SHDC (850-200-hPa vertical shear after vortex removal, $r = 0 - 500$ km)			х
SHRG (Generalized 850-200-hPa vertical shear, $r = 0 - 500$ km)	x	x	
SBTIR1 (Stan. Dev. of GOES BT, $r = 50-200$ km)	x		х
SBTIR2 (Stan. Dev. of GOES BT, $r = 100 - 300$ km)		x	
PCT30 (% area from 50-200 radius with GOES IR BT < -30 C)			х
PCT50 (% area from 50-200 radius with GOES IR BT < -50 C)	X		
MXBT (Maximum GOES IR BT from 0-30 km radius)		x	
IR Principal Component 2		X	

Atlantic Predictors (MW)

Predictor	Bayesian	Logistic	SHIPS-RII
Mean MIPA BT (36.5 h)		X	X
Max eye BT (36.5 v)			X
Mean BT (36.5 v) ($r = 30 - 130$ km)	X		
Radius of minimum 36.5-GHz PCT ($r = 30 - 130$ km)	X		
Principal Component 3 (36.5 v)		X	
Principal Component 3 (36.5 PCT)		X	
Principal Component 7 (36.5 h)		X	
Max eye BT (89 h)			X
Max eye BT (89 PCT)		X	
Principal Component 5 (89 h)	X	X	

Eastern Pacific Predictors (non-MW)

Predictor	Bayesian	Logistic	SHIPS-RII
PER (12-h intensity change observed for the preceding 12 h)	x	x	x
RHCN (Reynolds heat content)	x		
EPSS (The pos θ_{e} difference between parcel/environment, r = 200 – 800 km)	X		
ENSS (The neg θ_e difference between parcel/environment, $r = 200 - 800$ km)		X	
RHLO (850-700-hPa relative humidity, $r = 200 - 800$ km)		X	x
D200 (200-hPa divergence, $r = 0 - 1000$ km)		X	X
POT (Departure from the storm's potential intensity)	X	X	X
SHDC (850-200-hPa vertical shear after vortex removal, $r = 0 - 500$ km)	X	X	x
SBTIR1 (Stan. Dev. of GOES BT, $r = 50-200$ km)			X
SBTIR2 (Stan. Dev. of GOES BT, $r = 100 - 300$ km)	X	X	
PCT30 (% area from 50-200 radius with GOES IR BT < -30 C)			X
PCT50 (% area from 50-200 radius with GOES IR BT < -50 C)	X	X	
MXBT (Maximum GOES IR BT from 0-30 km radius)		X	

Eastern Pacific Predictors (MW)

Predictor	Bayesian	Logistic	SHIPS-RII
Mean MIPA BT (36.5 h)		X	X
MIPA Criteria: Percentage of MIPA 36.5 PCT < 270 K $$			X
Mean eye BT (36.5 v)	X		
Mean eye BT (36.5 PCT)			X
Eye Criteria: Percentage of MIPA BT (36.5 v) < 265 K			X
Maximium BT (36.5 v) (<i>r</i> = 30 – 130 km)	X		
Principal Component 3 (36.5 h)		X	X
Principal Component 3 (36.5 PCT)	X		
Mean MIPA BT (89 h)		X	
Max eye BT (89 PCT)		X	
Radius of minimum BT (89 h)	X		
Principal component 9 (89 h)		X	X

Model lead-times

- Follows operational consensus SHIPS-RII
 - 20 kt / 12 h
 - \cdot 25, 30, 35, and 40 kt / 24 h
 - 45 kt / 36 h
 - 55 kt / 48 h
 - 65 kt / 72 h

Example: Atlantic Skill Improvements

35 kt / 24 h threshold

Example: Eastern Pacific Skill Improvements

35 kt / 24 h threshold

Project Status

- Note: These models were rebuilt in the last few months.
 - To use an improved microwave-based dataset (improved calibration, increased resolution grids)
 - *Result:* large database of TC-centric polar and Cartesian-grid data (calibrated/uncalibrated) that may be of use to the general TC community.
 - An improved selection procedure of MW imagery for each forecast was desired.
 - *Negative side-effect:* Delay in evaluation of 2016 hurricane seasons.
 - Will evaluate after completion and testing of the latest iteration of models.

Project Status

- Note: These models were rebuilt in the last few months.
 - To use an improved microwave-based dataset (improved calibration, increased resolution grids)
 - *Result:* large database of TC-centric polar and Cartesian-grid data (calibrated/uncalibrated) that may be of use to the general TC community.
 - An improved selection procedure of MW imagery for each forecast was desired.
 - Negative side-effect: Delay in evaluation of 2016 hurricane seasons.
 - Will evaluate after completion and testing of the latest iteration of models.
- Most of the code has been converted to Fortran/C framework for use on WCOSS. We will wrap this work up in the next couple of months.
 - Leveraging Mark DeMaria et al.'s iships.f code set, including its SHIPS-RII consensus routines supported by previous JHT projects.

Project Status

- Note: These models were rebuilt in the last few months.
 - To use an improved microwave-based dataset (improved calibration, increased resolution grids)
 - *Result:* large database of TC-centric polar and Cartesian-grid data (calibrated/uncalibrated) that may be of use to the general TC community.
 - An improved selection procedure of MW imagery for each forecast was desired.
 - *Negative side-effect:* Delay in evaluation of 2016 hurricane seasons.
 - Will evaluate after completion and testing of the latest iteration of models.
- Most of the code has been converted to Fortran/C framework for use on WCOSS. We will wrap this work up in the next couple of months.
 - Leveraging Mark DeMaria et al.'s iships.f code set, including its SHIPS-RII consensus routines supported by previous JHT projects.
- Websites are being created at CIMSS for providing real-time output during 2017 season. Sarah Griffin (CIMSS) is leading this effort.
 - Mostly just waiting on the completion of scripts and finalized models

Real-time Web Page

- To be hosted at the CIMSS Tropical Cyclones webpages during 2017 Hurricane Season (<u>http://tropic.ssec.wisc.edu</u>)
- Example, Hurricane Matthew (2016) (<u>http://www.ssec.wisc.edu/~sarahm/MW_example</u>)

A	Microwave Rapid Intensification Index	Atlantic TCs
in a	Go to: Atlantic TCs	William .
1.8	Atlantia TCs	Past
270		Pacific
	MATTHEW at 09/30/16 00UTC	TCs
	Matrix of RI probabilities	and the second
		1.00
	SHIPS-RII 999.0% 999.0% 999.0% 999.0% 999.0% 999.0% 999.0% 999.0% 999.0%	64.1
1.00	Logistic 22.8% 19.1% 13.0% 8.6% 9.8% 6.1% 1.4% 0.9% Bayesian 10.3% 13.3% 8.9% 4.1% 4.2% 0.8% 0.1% 0.0%	
" do	Consensus 999.0% 999.0% 999.0% 999.0% 999.0% 999.0% 999.0% 999.0%	S. M. Carl
- All		
	095 AMSR2 85GHZ BT from 2017/0306 at 1003UTC Intensity and Consensus RI Probability for al142016 updated at 20160930 0215 UTC	Theres
		a start of
		and the second second
-		
		Salart
		Think .
-90		and the second
addi		1000
	0 0029 0030 0030	
	AMSR2 85 GHz Horizontal Brightness Temperature (K) Tropical Depression Terracil Bure Geograph 2 Category 1 Category 4 Category 5 Conservau RI Proteinity Paul	and the second second
		the second s

Sample Products

• Quilt diagrams will help forecaster visualize RI probabilities for all RI thresholds and lead-times very rapidly and also see a time history of previous forecasts along with the storm's intensity evolution.

