

Development of a Real-Time Automated Tropical Cyclone Surface Wind Analysis:

A Year 2 Joint Hurricane Testbed Project Update

Presented by John A. Knaff NOAA NESDIS, Fort Collins, CO

Renate Brummer, Mark DeMaria, Chris Landsea, Michael Brennan, Robbie Berg and Jessica Schauer

Purpose

- This project seeks to create a real-time and fully automated surface wind analysis system at the National Hurricane Center (NHC) by combining the existing satellite-based sixhourly multi-platform tropical cyclone surface wind analysis (MTCSWA) and aircraft reconnaissance data.
- Attempt to mimic how Hurricane Specialists would analyses observations using NHC's proceedures

In Year 1

- What input data?
 - 1. Reconnaissance
 - Flight-level winds
 - SFMR wind speeds
 - 2. Multi-platform tropical cyclone wind analyses
 - Satellite winds at 700 hPa

Analysis Issues?

- Determination of sufficient data
- For the polar variational analysis
 - Data weighting
 - Filter coefficients
- Automated Quality control/RMW determination
- Determination of wind radii

• Data Issues?

- How to handle data at multiple levels
- Reduce analysis to a 10-m estimated wind
- When to run the analysis?
 - Before (T-0:30)
 - Early (T)
 - After (T +1:30)
- How to distribute results?
 - ATCF fix
 - N-AWIPS grids

Flight-level to Surface Reduction

Assumptions

- Two regions
 - Eyewall [$r \le min(2 * rmw, 20 n.mi)$]
 - Outer vortex ($r \ge 4 * rmw$)
- 4 % azimuthal variation of reduction factors
- 4 (17) % azimuthal asymmetry with maximum-left and minimum-right in the eyewall (outer vortex)
- Six-hour storm direction is used for the asymmetry
- 20 degree inflow angle
- Over land, additional 20 degree inflow and 20% reduction

Reduction Factors

Level (hPa)	Eyewall	Outer Vortex
600-800	0.88	0.83
800-900	0.78	0.78
900-990	0.73	0.73
990-Sfc	0.77	0.77

When/How to Run

- (BEFORE) Just before the synoptic time (T) for assistance with the TC vitals (Bogus)
- (EARLY) Just after T for assistance with generating the TC vitals prior to requesting model guidance be run.
- (LATE) After the TC vitals has been prepared and after the model guidance has been submitted.

Process Run at CIRA in 2012

Summary of the Real-Time Testing

- Before synoptic time there is often not enough data to create an analysis (Could the aircraft be tasked earlier?)
- There were some "odd" analyses resulting from:
 - 1. Coding error resulting in negative data weights to the MTCSWA inputs.
 - 2. Quality control too stringent for weak systems
 - 3. Azimuthal filter weights were to small in some cases.
 - 4. Wind radii estimates in Sandy... logical error.
- Solutions:
 - Fix the coding error that caused negative data weights
 - Reduce initial quality control constraint
 - Make Azimuthal filter weights larger and sometimes dynamic
 - Fix the logical error in the wind radii estimates.

2010-2012 Analyses are viewable at http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_surface_wind_analyses/

3/6/2012

3/6/2012

3/6/2012

Unique Issues with Sandy

- Winds beyond 200 km radius rely on MTCSWA and reduction to surface
 - Should reduction factors be larger beyond some radius?
 - Should we truncate the analysis domain?
- Wind radii beyond the analysis domain
 - Do we try to separate storm from its environment?

Remaining Milestones

- May 2013 Prepare the analysis for a full season of real time testing
- Jun 2013 Gather feedback and make appropriate changes to the analysis system
- Jun 2013 Transition the analysis to NHC control, if approved for implementation
- Jun 2013 Project ends

Next Steps

Setting things up

- Housekeeping
 - Clean up FORTRAN Code
 - Clean up scripts add python control scripts
 - Work with NHC on display
 - Fixes or data to ATCF
 - Run in real-time for 2013
- Port Code to NHC
 - Ingest MTCSWA
 - Ingest HDOBS
 - HDOBS decoders
 - FORTRAN
- Questions
 - Flight-level to surface reduction beyond 200km

Concerns

- Data availability
 - Is there enough data to provide EARLY/BEFORE analyses
- NAWIPS and ATCF
 - Pick-up and regular display
 - ATCF Fixes
 - NAWIPS grids
- AWIPS-II?

Acknowledgements: This NOAA Joint Hurricane Testbed project was funded by the US Weather Research Program in NOAA/OAR's Office of Weather and Air Quality.

3/6/2012