Improving SFMR Surface Wind Measurements in Intense Rain Conditions

Eric Uhlhorn (NOAA/HRD) – Principal Investigator Brad Klotz (University of Miami/CIMAS/HRD) – Co-investigator

Acknowledgments

Funding provided by NOAA/Joint Hurricane Testbed

Project coordination (NHC):

Dan Brown, Eric Christensen, Eric Blake, and Chris Landsea

67th Interdepartmental Hurricane Conference 6 March 2013

Background

• The airborne stepped frequency microwave radiometer (SFMR) measures surface wind speed and rain rate in tropical cyclones

• Observations are obtained in all-weather conditions -- highest winds are most accurately measured

• In extreme precipitation and weak-to-moderate wind conditions, SFMR winds tend to be biased high relative to in situ ground-truth data

Year 1 Recap

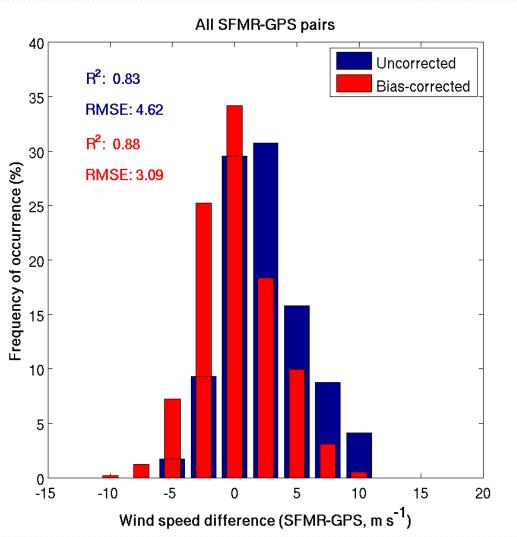
• Quantified the SFMR wind speed errors by developing and expanding a database of SFMR and GPS dropsonde pairs (2005 - 2011)

- Developed a wind speed bias statistical correction
 - This model applies a larger correction to lower wind speeds in heavy rain
 - $\Delta U = 2.853 0.070U_{SFMR} + 0.120R 1.019 \times 10^{-3} (U_{SFMR} \cdot R)$
- Validated the correction through an independent sample of the database
 - RMSE and mean bias both improved by > 50% for heavy rain and weak wind conditions

JHT Year 2 Objectives

- Apply correction in real-time at the National Hurricane Center
 Available to forecasters when aircraft data were being transmitted
- Evaluate the bias correction of the 2012 data
 - Similarly to the previous data (2005-2011), the 2012 bias corrected winds are paired with surface-adjusted winds from the GPS sondes
 - Statistical tests and comparisons are completed
- Develop an updated wind-emissivity relationship from additional data
 Includes data from 2012 and removes data that have less than 10 mm hr⁻¹ SFMR rain rate
- Develop a new rain-absorption model based on independent rain data
 - Using coincident Tail Doppler and Precipitation Imaging Probe (PIP) rain data, a new Z-R relationship is developed.
 - This new Z-R is used for determining the relationship between the R and absorption

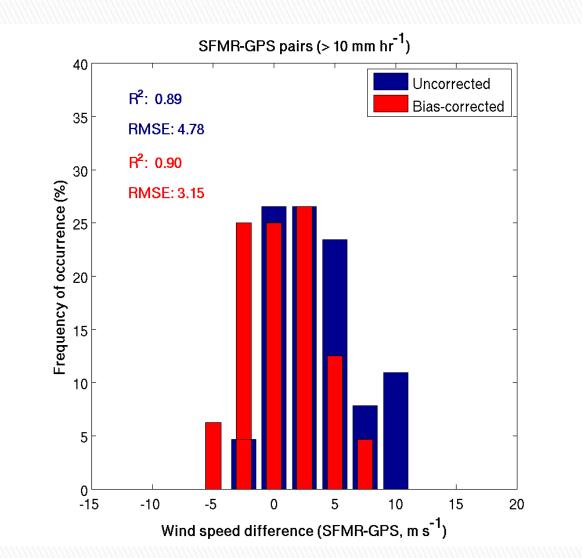
Evaluation of 2012 bias correction


• All data for NOAA and AFRC missions were processed and paired with GPS dropsondes

- A total of 582 pairs were collected, 89% of which were in rain less than 10 mm hr^{-1}

	U _{SFMR} < 17	$17 \le U_{\rm SFMR} < 25$	$25 \le U_{SFMR} < 33$	$33 \le U_{SFMR} < 50$	$U_{SFMR} \ge 50$
RR < 10	2.74 (0.22)	1.44 (-0.39)	1.32 (0.41)	2.24 (1.49)	()
	281 (322)	186 (155)	37 (32)	14 (9)	0 (0)
10 ≤ RR < 20	7.91 (3.64)	4.03 (0.59)	2.42 (-0.39)	0.45 ()	()
	5 (10)	17 (17)	16 (14)	4 (1)	0 (0)
$20 \leq \mathrm{RR} < 30$	()	()	3.33 (0.64)	2.49 (-1.11)	()
	0 (1)	1 (1)	6 (7)	5 (3)	0 (0)
RR ≥ 30	()	(1.96)	4.67 (-1.00)	()	()
	0 (1)	1 (4)	7 (4)	2 (1)	0 (0)

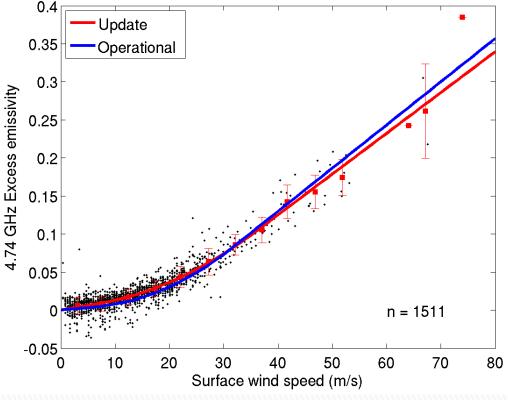
Evaluation of 2012 correction (cont.)


- Histogram of all pairs indicates that the bias-corrected winds compare better to the GPS dropsonde winds
- The difference between the two samples is statistically significant at 95% confidence

Evaluation of 2012 correction (cont.)

• For heavier rain conditions (> 10 mm hr^{-1}), the difference between the two wind measurements shifts closer to zero.

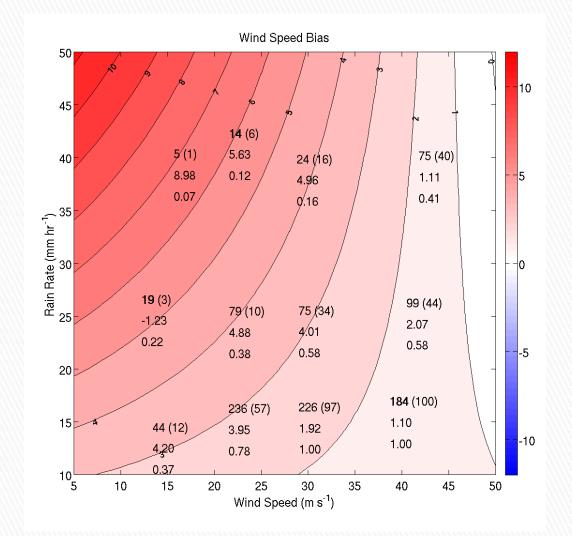
• The difference in sample means is also statistically significant at 95% confidence



Updated Wind-Emissivity

• As part of the year 2 goals, we updated the wind-emissivity function in the GMF

- Used the expanded SFMR-GPS dropsonde database and excluded values with rain rate $<10~mm~hr^{-1}$ for wind speeds $<40~m~s^{-1}$


• Changes are shown at the lower wind speeds, but overall, the changes are minimal

SFMR bias correction (high rain rate)

• Bias correction model updated with new data for $RR > 10 \text{ mm hr}^{-1}$ and wind speeds < 50 m s⁻¹

• Higher weights are applied to weaker winds and higher rain rates

 $\Delta U = 1.054 + 0.005 \, 1U_{SFMR} + 0.229 \, R - 5.147 \times 10^{-3} (U_{SFMR} \cdot R)$

Summary and remaining work for year 2

- To correct the overestimation of SFMR wind speeds in the presence of moderate to heavy rain:
 - Applied the bias-correction in real-time during the 2012 hurricane season
 - Statistically evaluated the performance of the bias-correction
 - Developed a new wind-emissivity model function based on the expanded database and for rain conditions only
 - Developing a new rain-absorption model to complete the new algorithm.

