Improving SFMR Surface Wind Measurements in Intense Rain Conditions

Eric Uhlhorn (NOAA/HRD) – Principal Investigator Brad Klotz (University of Miami/CIMAS/HRD) – Co-investigator

Acknowledgments

Funding provided by NOAA/Joint Hurricane Testbed, U.S. Weather Research

Program of OAR's Office of Weather and Air Quality

Project coordination (NHC): Dan Brown, Eric Christensen, Eric Blake, and Chris

Landsea

66th Interdepartmental Hurricane Conference 6 March 2012 Charleston, SC

Background

• The airborne stepped frequency microwave radiometer (SFMR) is useful for measuring surface wind speed and rain rate in tropical cyclones

• The SFMR measures wind speeds in all-conditions, but is especially known for accurate measurements of hurricane force winds

• In rainy conditions, the SFMR tends to overestimate the wind speeds in wind regimes less than hurricane strength

• Two reasons for this overestimation:

- Current Geophysical Model Function (GMF) tuned to weak precipitation conditions
- Current rain absorption model over-predicts the absorption due to rain

Overestimation of SFMR wind speed

• Example from T.S. Earl shows overestimation of SFMR wind speed in comparison with GPS dropwindsonde surface-adjusted wind speed;

• $\Delta U \sim 5 \text{ m s}^{-1}$, $R = 20 \text{ mm hr}^{-1}$; $\Delta U < 1 \text{ m s}^{-1}$, $R < 5 \text{ mm hr}^{-1}$

- Correlation (r) between wind speed (SFMR and FL) and rain rate
 - Overall (33 flights): $r_{SFMR_v_R} = 0.48; r_{FL_v_R} = 0.18$ • T.S. Earl flight: $r_{SFMR_v_R} = 0.49; r_{FL_v_R} = 0.03$

JHT Plan and Goals

• Proposed year 1 plan to address SFMR wind speed overestimation:

- Quantify the errors of SFMR wind speed, especially in weak wind, heavy rain conditions
- Develop an empirically derived wind speed correction to be utilized in real time during the 2012 hurricane season

Goals and Objectives:

- Expand the SFMR vs. GPS dropwindsonde database
 - Pre-JHT database (2005-2010) contains paired samples of SFMR wind speed and rain rate and GPS dropwindsonde surface adjusted wind speeds
 - Expanded version contains 2011 pairs as well as synthetically developed dropwindsonde wind speeds (NOAA only)
- Use expanded database to create wind speed correction model
- Apply this correction model to independent data for validation

Database expansion

• Pre-JHT version of database contains very few pairs within the weak wind speeds and moderate-high rain rate regimes (U < 33 m s⁻¹, R > 10 mm hr⁻¹)

 \bullet During the 2011 hurricane season, collected pairs in the desired range and increased the representation by 20%

• Increased from 103 to 124, but still viewed as under-sampled data

• To add more samples to database, created synthetic dropwindsonde wind speeds based on flight-level wind speed reduction

- Relationship with WL150 wind speed
- Flight-level winds reduced outside 2 RMW to remove eyewall tilt effects (Dunion et al. 2003)
- Flight-level wind from ~700 mb height
- Only considered data with SFMR rain rate $> 10 \text{ mm hr}^{-1}$

Synthetic dropwindsondes

- Relationship between flightlevel wind speed and WL150 from dropwindsonde
- Developed from 2010-2011 NOAA dropwindsonde data
- Regression fit used to calculate expected WL150 wind speeds
- Adjust these wind speeds to surface as discussed in Franklin et al. (2003) and Uhlhorn et al. (2007)

 $U_{WL150} = 2.30 \times 10^{-3} U_{FL}^{2} + 0.72 U_{FL} + 3.21$

Final database expansion

• With addition of 2011 data and synthetic dropwindsondes, database expanded from 1581 to 2628 total dropwindsondes

• Within wind speeds $< 33 \text{ m s}^{-1}$ and rain rates $>= 20 \text{ mm hr}^{-1}$, increased from 33 to 198 dropwindsondes (over 75% of these are synthetic)

• Overall: RMSE = 4.5 m s^{-1} , mean bias = $+2.0 \text{ m s}^{-1}$

	U _{SFMR} (m/s)	<17	17 – 25	25 – 33	33 – 50	> 50
R _{SFMR} (mm/hr)						
< 10		767 - 918 - 918	347 - 418 - 418	154 - 200 - 200	90 - 101 - 101	7 – 7- 7
10 - 20		7 - 7 - 41	27 - 31 - 217	36 - 42 - 178	51 – 57 – 145	6 - 6 - 10
20 - 30		2 - 2 - 19	7 - 9 - 80	17 - 21 - 64	17 - 21 - 80	8 - 8 - 19
> 30		0-0-5	3 – 5 – 14	4 - 7 - 16	21 - 24 - 60	10 - 10 - 43

SFMR bias correction

• A random sample of 80% of the expanded database was used to develop a bias correction model

• The remaining 20% used as an independent sample for validation of the bias correction model

• Weighted mean biases and several other statistical parameters calculated within 4 rain rate bins and 5 SFMR wind speed bins

• Real data given highest weight and synthetic data are weighted according to the least-squares fit of the SFMR wind speed and real dropwindsonde surface-adjusted wind speed

• Polynomial function fit based on these binned data, indicating that weak wind and high rain rate conditions require the largest bias correction

SFMR bias correction (cont.)

• Bias correction model created from the binned data

• Weights associated with this function fit are based on the inverse of the standard deviation

• Example: for a wind speed ~17 m s⁻¹ and rain rate > 30 mm hr⁻¹, the expected bias would be >= 4.5 m s^{-1}

 $\Delta U = 3.096 - 0.072U_{SFMR} + 0.079R + 4.938 \times 10^{-4} (U_{SFMR} \cdot R)$

Correction model validation

- Correction model applied to the SFMR wind speeds in the remaining independent sample
- Over all wind speeds and rain rates:
 - RMSE decreases from 4.5 m s⁻¹ to 2.9 m s⁻¹ (36% improvement in accuracy)
 - Mean bias decreases from +2.0 m s⁻¹ to +1.0 m s⁻¹ (50% improvement)
- For $U < 33 \text{ m s}^{-1}$ and $R > 20 \text{ mm hr}^{-1}$
 - RMSE decreases from 5.3 m s⁻¹ to 2.7 m s⁻¹ (**49% improvement in accuracy**)
 - Mean bias decreases from +2.6 m s⁻¹ to +0.5 m s⁻¹ (81% improvement)

Summary and remaining work for year 1

• To correct the overestimation of SFMR wind speeds in the presence of moderate to heavy rain:

- Expanded SFMR vs. dropwindsonde database through use of real and synthetic dropwindsonde data
- Calculated statistics for binned data and developed polynomial function fit to these data
- Validation from independent sample shows significant improvement in accuracy and in bias correction for the overall data and for the weak wind, heavy rain conditions
- Correlation between corrected SFMR wind speed and rain rate is reduced from 0.48 to 0.39 SFMR wind speed is less coupled with trends in rain rate

Remaining tasks for JHT year 1:

• Implement correction software into JHT testing environment for parallel SFMR wind speed product – prior to 2012 hurricane season

- Perform real-time testing of corrected SFMR winds during 2012 season
- Begin development of updated GMF accounting for the corrected wind speeds

References

1. Dunion, J. P., C. W. Landsea, S. H. Houston, M. D. Powell, 2003: A reanalysis of the surface winds for Hurricane Donna of 1960. *Mon. Wea. Rev.*, **131**, 1992 – 2011.

2. Franklin, J. L., M. L. Black, K. Valde, 2003: GPS dropwindsonde profiles in hurricanes and their operational implications. *Wea. Forecasting.*, **18**, 32 – 44.

3. Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. *Mon. Wea. Rev.*, **135**, 3070 – 3085.

B. Klotz, 66th IHC, 6 March 2012