Modeling of Wind-Wave-Current Coupled Processes in Hurricanes

Isaac Ginis
Yalin Fan
Tetsu Hara
Biju Thomas

Graduate School of Oceanography
University of Rhode Island

62nd Interdepartmental Hurricane Conference
Wind-Wave-Current Interaction

Wind

Sea state, Sea spray

Surface waves

Current

Sea state, Sea spray

Current

Ocean currents

Atmosphere

Ocean

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind

Surface waves

Current

Ocean currents

Sea state, Sea spray

Current

Wind
Key Air-Sea Physical Processes in the Coupled Tropical Cyclone-Ocean System
2D LES BL Model for Roll Vortices

3.0 km, 61 levels

2-4 km

8.0 km, 40 m resolution

"Cloud streets"
2D LES BL Model for Roll Vortices

Graph showing wind departure (m/s) vs. height (km) for 'With Rolls' and 'No Rolls' conditions.
Wave BL Model: Drag Coefficient Sea State Dependence

Wave BL Model: Drag Coefficient Sea State Dependence
\[\vec{\tau}_{air} = \vec{\tau}_{c} + (\vec{\tau}_{growth} + \vec{\tau}_{\text{divergence}}) \]

M - total momentum
MF - total momentum flux

Momentum Flux from Atmosphere
\((\vec{\tau}_{air}) \)

Horizontal wave propagation
\((\vec{\tau}_{\text{divergence}} = \nabla MF) \)

Wave growth
\((\vec{\tau}_{growth} = \frac{\partial M}{\partial t}) \)

Momentum Flux into Currents
\((\vec{\tau}_{c}) \)

Flux Budget Model

Atmosphere
Ocean
Surface Waves
Ocean Currents
Flux Budget Model

- Idealized Hurricane experiments

Holland Hurricane Wind Model

Input parameters:
- Maximum wind speed (MWS)
- Radius of MWS (RMW)
- Central & environmental sea-level pressure

Wind Field (m/s)

TSP = 5m/s
Flux Budget Model

Wind Model

\[\vec{U}_{\infty} \]

Wave Boundary Layer Model

\[\vec{\tau}_{\text{av}} \Psi(k,\theta) \]

Flux Budget Model

\[\vec{\tau}_{c} \]

Ocean Model

\[
\frac{\vec{\tau}_{c}}{\vec{\tau}_{\text{air}}} \times 100\%
\]

3D model showing wave patterns with color coding and arrow vectors indicating wind direction.
Wind-wave-current Interaction

Wind Model

\[\vec{U}_0 \]

\[\vec{\tau}_w \]

\[\psi_{\text{peak}}(k, \theta), f_W \]

Wave Boundary Layer Model

\[\vec{\tau}_c \]

\[\vec{U}_c \]

Flux Budget Model

\[\vec{U}_c \]

Ocean Model

\[\vec{\tau}_c / \vec{\tau}_{\text{air}} \times 100\% \]

\[W \text{ at } 90 \text{ m} \]

\[x \times 10^3 \]

\[3 \]

\[2.5 \]

\[2 \]

\[1.5 \]

\[1 \]

\[0.5 \]

\[0 \]

\[-0.5 \]

\[-1 \]

\[-1.5 \]

Currents

\[\text{Latitude} \]

\[\text{Longitude} \]

\[25 \]

\[26 \]

\[27 \]

\[28 \]

\[29 \]

\[30 \]

\[31 \]

\[32 \]

\[33 \]

\[\text{Longitude} \]

\[6 \]

\[8 \]

\[10 \]

\[12 \text{(ms}^{-1}) \]

\[80 \]

\[85 \]

\[90 \]

\[95 \]

\[100 \]

\[105 \]

\[110 \]

\[115 \]

\[120 \]
Impact Wind-Wave-Current Interaction on Ocean Cooling

SST anomaly when $\vec{\tau}_{\text{air}}$ as forcing (Control Exp.)

SST anomaly in Fully Coupled Exp.

— SST anomaly in Control Exp.
Impact Wind-Wave-Current Interaction on Waves

- Hurricane Ivan (2005) track and reconnaissance flight tracks

Flight tracks/Scanning Radar Altimeter measurements
NASA/Goddard space flight center & NOAA/HRD

Sept. 09 1800 UTC

Sept. 06 00 UTC

Wind (ms⁻¹)
Impact Wind-Wave-Current Interaction on Waves

- **Significant Wave Height Swaths**

(a) Exp. A

Exp. A: WAVEWATCH III wave model (operational model)

(b) Exp. B

Exp. B: Coupled wind-wave model

(c) Exp. C

Exp. C: Coupled wind-wave-current model
Impact Wind-Wave-Current Interaction on Waves

Wave parameters comparison between model and SRA (Courtesy of Ed Walsh)
Air-Sea Coupling Strategies for Tropical Models

- **In the TC model**, the parameterizations of the air-sea heat and momentum explicitly include the a) *sea state dependence*, b) *SST* and c) ocean current effects.

- **The wave model** is forced by a) *the sea-state dependent momentum flux* and b) includes the *ocean current effects*.

- **The ocean model** is forced by a) *the sea-state dependent momentum and energy fluxes* calculated from the air-sea flux budget.