
Joint Hurricane Testbed: Year-2 Final Report
Dynamic Initialization to Improve Tropical Cyclone Intensity and Structure Forecasts

Principle Investigator: Chi-Sann Liou
Naval Research Laboratory, Monterey, CA

June 2007
1. Introduction

Development of a proper initialization method for tropical cyclone modeling remains a
challenging task for tropical cyclone modelers. The difficulty stems from both inadequate
observational data coverage and inadequate data analysis methodology. For most
operational centers, the data analysis for tropical cyclone initialization is performed by 3-
dimensional variational (3D-Var) analysis with poor quality background fields and a
geostrophic-wind balance constraint. As a consequence, initial conditions provided to
dynamic models are usually unbalanced with large oscillations in early forecast periods
(Fig.1). The large initial oscillations prohibit forecasters from using the potentially most
accurate intensity and structure tendency forecasts at early periods for forecasting
guidance. The goal of this project is to develop and implement a dynamic initialization
procedure to balance initial conditions for tropical cyclone forecasts by the hurricane
Weather Research Forecasting (HWRF) model and the Coupled Ocean-Atmosphere
Mesoscale Prediction System (COAMPS1).

There are two types of initialization procedure used in numerical weather prediction to
remove unbalanced components from initial conditions: static initialization and dynamic
initialization. Static initialization removes the tendency of high frequency components
from initial conditions by solving the nonlinear balance equation iteratively for each high
frequency mode. Dynamic initialization removes the tendency of high frequency
components from initial conditions by damping or filtering out high frequency solutions
through back and forth integrations. The cost of static initialization is little, but it may not
be suitable for tropical cyclone initialization since it can only include adiabatic processes.
The iteration may not converge when diabatic terms are included in the balance calculation
(Williamson and Temperton 1981, Rasch 1985). On the other hand, the cost of dynamic
initialization is higher than that for static initialization, but it can include all diabatic
processes in searching for balanced initial conditions. Digital filter initialization is one
kind of dynamic initialization that filters out high frequency components through use of a
discrete Fourier Transform. Lynch and Huang (1992) have analytically shown that
adiabatic digital filtering is identical to Machenhauer’s criterion for static initialization
when the nonlinear terms are assumed constant in time. They have further shown that with
slowly varying nonlinear forcing adiabatic digital filtering can still precisely remove high-
frequency components from the initial conditions, while some high-frequency components
will remain in the initial conditions after static initialization. Huang and Lynch (1993)
have demonstrated that diabatic digital filtering is superior to the corresponding adiabatic
digital filtering in reducing initial forecast noise and providing a better organized initial
pressure-tendency field. The digital filter procedure, especially diabatic digital filtering,
takes the time variation of nonlinear terms and the diabatic forcing into account so that the

1 COAMPS is a trademark of Naval Research Laboratory

initialization should lead to a better balance condition. Including diabatic processes in the
initialization procedure is particularly important for tropical cyclone initialization since the
diabatic forcing dominates the flow balance near a tropical cyclone core. The diabatic
digital filter (DDF) initialization is the procedure we have developed and implemented for
tropical cyclone forecasts by HWRF and COAMPS.
2. DDF Initialization

All initialization procedures for numerical modeling assume that unbalanced
components are in high frequencies and they can be removed by filtering out tendency
components with frequencies higher than a cutoff frequency. A traditional dynamic
initialization procedure uses a selective damping mechanism during back and forth pre-
forecast integrations to remove high-frequency components from initial conditions. On the
other hand, the digital filter initialization uses a discrete, inverse Fourier transform of a
lowpass filter to very selectively filter out high-frequency oscillations from initial
conditions. In a frequency domain, the digital filtering operates as

c

cinout
HwhereHFF

!!

!!!!!!

>=

"==

,0

,1)(),(*)()(
 (1)

where
c

! is the cutoff frequency, and
in
F and

out
F are the frequency component before and

after the filtering, respectively. In a physical domain, after applying the convolution
theory and truncated inverse Fourier transform, the digital filtering acts as

!!
"=

"

#

"#=
" $=

N

Nk
knk

k
knkn fhfhf

~ (2)

where nf
~ is the filtered field at time n, knf ! is the original field at time (n-k),

!

"

k

tk
h

c

k

)sin(#
= is the inverse Fourier transform of)(!H with t! time step, and tN !*2 is

equal to the cutoff period. To improve the convergence rate and reduce negative ripples, a
window-function

k
w is usually applied together with the filtering weight

k
h as

!
"=

"=
N

Nk
knkkn fwhf

~ (3)

After a broad survey and careful evaluation, we have chosen the Dolph-Chebyshev
window which gives the window function as

!
=

+
+

=
N

m

n

m

Nn
mxT

Nw
w

1
02

0

]cos)
2

cos(21[
)12(

1
"

"
, where

,
)12(

2,
)12(

2),cosh
2
1cosh(1

0 +
=

+
==

!

N
n

N
m

N
x

nm
"#"#$ and T2N is

Chebyshev polynomial. With this window function, we will demonstrate later that a 2h or
less cutoff period is sufficient to effectively remove unbalanced high frequency oscillations
in early model forecasts.

In order to compute the filtered field nf
~ in (3), one has to integrate the model back

and forth to obtain the time series knf ! . For adiabatic digital filtering, we integrate the
model backward and forward adiabatically both from the analysis state for a half cutoff

period to obtain the needed knf ! for filtering. For diabatic digital filtering, one can either
(a) integrate the model backward adiabatically for a half cutoff period and forward
diabatically for a full cutoff period, or (b) integrate the model backward adiabatically for a
full cutoff period, apply filtering, and then integrate forward diabatically for a full cutoff
period to obtain knf ! (Fig. 2). From the results of many numerical experiments, we have
concluded that the two integration procedures for diabatic digital filtering give very similar
filtering effects. We, therefore, choose the first integration procedure of the diabatic digital
filtering to save cost.

There are several practical decisions we have to make when we apply the diabatic
digital filtering to balance initial conditions for mesoscale models. We have to choose a
cutoff period, a way to handle boundary conditions during back and forth initialization
integrations, a way to handle moving grids, and amounts of numerical diffusion to control
numerical noise in space,. The most critical decision is the choice of cutoff period. It not
only determines the cost of the dynamic initialization, but also affects the other decisions.
For tropical cyclone initialization, the most unbalanced components are of very high
frequency, with oscillation periods shorter than a few time steps. Therefore, a relatively
short cutoff period should be sufficient to remove the major portion of the unbalanced
components. A short cutoff period allows us to choose fixed boundary conditions and
fixed moving grids during the initialization integrations. Furthermore, a short cutoff
period can prevent very large wind speeds in the backward adiabatic integration that may
otherwise exceed the Courant-Freidrichs-Levy (CFL) condition, resulting in instability.
We have chosen a 2h or less cutoff period with fixed boundary conditions and fixed
moving grids when we implement the DDF initialization to HWRF and COAMPS.
3. Implementation to HWRF and COAMPS

Prior to the start of this project, the dynamic initialization procedure in COAMPS
consisted only of an adiabatic digital filter initialization with Lanczos window. In this
project, we have added options in COAMPS to choose different windows (Lanczos,
Kaiser, or Dolph-Chebyshev) and different integration strategies (adiabatic filtering,
diabatic filtering, or diabatic double filtering). We then used COAMPS as our tool to
perform numerical experiments in testing the impacts of difference choices, such as the
cutoff period, boundary condition treatments, window selection, and integration strategy
on COAMPS tropical cyclone forecasts.

Implementing DDF initialization to HWRF is much more difficult than the task for
COAMPS. One has to follow specific infrastructure rules set up by Weather Research
Forecasting (WRF) model committees. WRF uses Earth System Modeling Framework
(ESMF) clock utilities to control time integration and recursive calls to handle do-loops
and grid nesting. The code is not all explicitly traceable to numerical modelers.
Furthermore, WRF uses a data dictionary (Registry file) to construct a large portion of its
source code during the compiling time. This makes code modification a bit more difficult
since the changes made to the code may be lost after recompiling. After discussing with
HWRF team members and going through several iterations in design, we have developed a
DDF package for HWRF that needs only 1 line change to original HWRF source codes, 1
line change to the Registry file, and few line changes in Makefiles for adding new routines.

The package includes 4 “*.F” files, “ddf_init.F”, “ddf_interface.F”, “module_ddf_filter.F”
and “module_ddf_integrate.F”.

The routine “ddf_init” is the driver of the DDF initialization that is inserted into the
original HWRF routine “wrf_run” right before the “call integrate (head_grid)”. It
performs the following functions, (a) allocates work arrays for DDF integrations, (b)
allocates all nest grids (similar to codes in routine “integrate”, (c) saves original physics
parameters and clock settings to local arrays, (d) computes filter weights, (e) changes clock
settings for backward and forward integrations of the dynamic initialization, (f) perform
time integration and filtering by calling "ddf_integrate", (g) puts back original physics
parameters and clock settings after the initialization has been completed, (h) and
deallocates all DDF work arrays. The routine “ddf_interface” is modified from the
original HWRF routine “sove_interface” by adding the “call ddfilter” to perform the
summation for the inverse Fourier transform in equation (3). The module
“module_ddf_filter” contains all the digital filtering routines that compute weights for
filtering and the summation. The module “module_ddf_integrate” is modified from the
original HWRF module “module_intergrate” by taking out allocation for nest grids
(already included in ddf_init) and adding controls to perform adiabatic backward and
diabatic forward DDF integration. The new “ddf_interface.F” file is added to the HWRF
directory “./share”, and the rest of three new files “ddf_init.F”, “module_ddf_filter.F” and
“module_ddf_integrate.f” are added to the HWRF directory “./frame”. With
modifications to corresponding Makefiles for new files, inserting “call ddf_init” in
“wrf_run” routine, and adding “cutoff_hr” to the Registry_nmm file, the HWRF
“compile” script successfully completes the compilation and generates 1 “.a” file and 5
“.exe” files in “./main”.

4. Test and Evaluation
Since the HWRF was also under development with frequent updates during the same

time period that this project was conducted, our testing and evaluating DDF initialization
for tropical cyclone forecasts are mainly performed with COAMPS. With the choice of a
2h cutoff period, the initial oscillations shown in Fig.1 are greatly reduced after the DDF
initialization. (Fig.3). The example shown in Fig.1a and Fig. 1b may be an extreme case
since the quality of the initial analysis is very poor that analyzed sea-level pressure and 850
mb wind centers are dislocated (Fig.4). The DDF initialization corrects this dislocation
problem (Fig. 5). The sudden shrink of sea-level pressure pattern in early forecast (Figs.
1c, d) comes from another type of unbalance that pressure gradient is not large enough to
support the balance with strong wind (Fig 6). As a consequence, the sea-level pressure
pattern is quickly adjusted to a tighter pattern in early forecast periods. With a better initial
analysis, the initial oscillations for the same model forecast are less serious (Fig.7).
However, without any initialization, the initial oscillations are still too large to prohibit
forecasters from using the predicted initial tendencies for guidance. With DDF
initialization (red lines in Figs. 7c, d), much clear tendencies of a delaying cyclone can be
seen from the model forecast. From Fig. 3 and Fig. 7, we can find that the two types of
diabatic digital filtering integrations (diab-1 and diab-2) give very similar filtering results,
while adiabatic filtering (blue lines) leaves significant parts of unbalanced components in
initial conditions after the filtering. Fig. 8 shows another example of the comparison
between the 3 types of filtering. Unbalanced initial oscillations are again quite large with

adiabatic digital filtering and the two types of diabatic digital filtering produces similar
results. Fig. 9 shows a comparison with and without DDF initialization for a tropical
cyclone intensifying in early forecast and Fig. 10 shows a similar comparison for an initial
decaying case. These examples clearly demonstrate that DDF initialization can improve
the quality of tropical cyclone initial tendency forecasts predicted by the model.

The overall impacts of DDF initialization on tropical cyclone track and intensity
forecasts should depend strongly on the quality of initial analysis and characters of the
dynamic model. For COAMPS, with 58 model forecasts, we find DDF initialization gives
small positive impacts on both track and intensity forecasts (Fig.11). The improvement to
the track forecast is quite minimal until 48h forecast. The improvement to the intensity
forecast is more significant (about 10%) starting from 6h forecast. The degradation of
cyclone intensity at initial time may be misleading since the analyzed strong wind may not
be maintained by the dynamic model, either due to inadequate resolution and physics or
large amounts of unbalanced components from the analysis.

The implementation of DDF initialization to HWRF is tested by constructing an
idealized environment that uses prescribed initial conditions and prescribed tendencies for
prognostic variables without going through an actual HWRF forecast. The idea is to test
the DDF integration flow and the filtering process without interference from other parts of
the HWRF forecast. Since the DDF routines all use HWRF routines to get initial
conditions and calculate the time changes of prognostic variables, the DDF initialization
should work well in HWRF with real data, if it passes this idealized test. A supplemental
routine “setinit.f” was written to set up ESMF clock parameters for DDF integrations,
assign proper input values to “mod_config_rec” for grid configuration, and prescribe initial
values to the prognostic variables. A small driver “testdriver.f” was written to call
“setinit” and “ddf_init” for testing the DDF integration. The HWRF routine “solve_nmm”
was trimmed to only specify the prognostic variable tendencies. All needed HWRF
routines referenced in the “USE” statements of the DDF routines are collected in a
working directory to create a library for testing. Some modifications to those routines
were made to avoid interaction with the HWRF Input/Output and moving grid setup. After
a long debugging process, the testing program successfully runs, and products a printout
that verifies the DDF time integrations and filtering process are correctly performed in the
HWRF structure (see Appendix 1).

5. Discussion
DDF initialization is designed to remove unbalanced high-frequency oscillations from

initial conditions. Therefore, its impacts on model tropical cyclone forecasts depend upon
the degree of imbalance in the initial conditions. Initialization for tropical cyclone
forecasts may be fundamentally different from initialization for general NWP applications.
For synoptic or mesoscale NWP forecasts, initial conditions usually contain a relatively
small amount of unbalanced components. Therefore, the NWP forecasts with and without
initialization tend to merge together after the initial adjustment oscillations. On the other
hand, due to poor quality background fields and an inadequate analysis method, initial
conditions for tropical cyclone forecasts usually contain a large amount of unbalanced
components. Therefore, the tropical cyclone forecasts with and without initialization may
not merge together after the initial oscillations. In fact, significant changes to tropical
cyclone track and intensity forecasts may occur in some cases after the DDF initialization.

However, with DDF initialization, forecasters can be confident that the initial intensity and
structure tendencies predicted by the model are from the model dynamics rather than
unbalanced oscillations. This will add new value to dynamic models for providing
forecasters with guidance in tropical cyclone intensity and structure forecasts. In
evaluating COAMPS intensity forecasts, we have realized that, after DDF initialization,
the predicted initial tendency of central sea level pressure is much more reliable than the
predicted initial tendency of maximum wind extracted from the lowest model level. The
maximum wind tends to be underestimated after DDF initialization if the tropical cyclone
is a strong one initially. In such cases, the maximum wind tends to increase for a few
hours after the DDF initialization no matter if the central pressure is dropping or filling.
The underestimate in surface wind is interpreted as a result of too large a surface stress
applied to the lowest level when very strong wind appears at the lowest level after the
frictionless backward integration. The situation is improved by a shorter cutoff period that
reduces the wind speed at the lowest level with the shorter backward integration. The
shorter cutoff period for those strong cyclone cases has very little impact on their track
forecasts.

Appendix 1
List here is a trimmed sample of printout from a test run for DDF implementation to

HWRF. The full printout can be generated by running the test script ./testddf/run/run-
ddf.cc, included in the delivered tar file.

 in test - before call setinit
 inside setinit: #alarm= 5
 inside setinit: done model_config_rec assignment
 setinit: before calling alloc_and_conf
 DYNAMICS OPTION: nmm dyncore
 alloc_space_field: domain 1 0
 inside setinit: head_grid%id = 1
 head_grid%alarms(1) is off
 head_grid%alarms(1)%RingTimeSet= T
 head_grid%alarms(1)%RingIntervalSet= F
 head_grid%alarms(1)%Enabled = T
 inside setinit: after initializing prognostic variables
 inside setinit: id= 1
 inside setinit: m,n,kk,nbdy= 101 99 18 5
 in test - before call ddf-init, after grid allocation: id = 1
 in test - m,n,kk = 101 99 18 5
 in ddf-init: 0, just in ddf_init, head_grid%id = 1
 nesting time
 nest_start%YR 2007 | nest_stop%YR 2007
 nest_start%MM 1 | nest_stop%MM 1
 nest_start%DD 15 | nest_stop%DD 15

 parenting time
 head_grid%current_time%YR 2007
 head_grid%current_time%MM 1
 head_grid%current_time%DD 15
 DYNAMICS OPTION: nmm dyncore
 alloc_space_field: domain 2 0
 from med_nest_initial: initialize inner nest OK, id= 2
 in ddf-init: 1, found child mesh, id,dt= 2 111 0 1 0 0 0 F 0 0

0
 in ddf-init: 2, ncount, imore = 2 1
 nesting time
 nest_start%YR 2007 | nest_stop%YR 2007
 nest_start%MM 1 | nest_stop%MM 1
 nest_start%DD 15 | nest_stop%DD 15

 parenting time
 head_grid%current_time%YR 2007
 head_grid%current_time%MM 1
 head_grid%current_time%DD 15
 DYNAMICS OPTION: nmm dyncore
 alloc_space_field: domain 3 0
 from med_nest_initial: initialize inner nest OK, id= 3
 in ddf-init: 3, found deeper child mesh, id,dt = 3 37 0 1 0 0 0

F 0 0 0 3
 in ddf-init: 4, for deeper child mesh, id = 3 1
 in ddf-init: 4, for deeper child mesh, id = 3 0
 in ddf-init: 5, mmmx = 144
 in ddf-init: 6, nest,ims,ime,jms,jme,kms,kme= 1 1 101 1 99

1 18
 in ddf-init: 6, nest,ims,ime,jms,jme,kms,kme= 2 1 78 1 92 1

18
 in ddf-init: 6, nest,ims,ime,jms,jme,kms,kme= 3 1 65 1 91 1

18
 hn0-1 = 0.6250000000E-01 1
 hnsum = 0.9800289273 1 16
 hn0-1 = 0.2083333395E-01 2
 hnsum = 0.9794594049 2 48
 hn0-1 = 0.6944444496E-02 3
 hnsum = 0.9796720147 3 144

 inside ddf_integrate- 1: stop_subtime for, id= 1 101 18 99
 inside ddf_integrate- 2: inside DO-WHILE:= 0 1
 inside solve_nmm: id,dt,istep = 1 -333.0000000 0
 inside solve_nmm: pd,u,v,t = 997.2249756 7.224999905 -

1.775000095 284.4500122
 inside solve_nmm: pd,u,v,t = 997.2249756 7.224999905 -

1.775000095 284.4500122
 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 1 1

 inside ddf_integrate- 4: before ddf_integrate= 2 111 0 1 0 0
0 F 0 0 0

 inside ddf_integrate- 1: stop_subtime for, id= 2 78 18 92
 inside ddf_integrate- 2: inside DO-WHILE:= 0 2
 inside solve_nmm: id,dt,istep = 2 -111.0000000 0
 inside solve_nmm: pd,u,v,t = 1029.074951 19.07500076

1.075000048 308.1499939
 inside solve_nmm: pd,u,v,t = 1029.074951 19.07500076

1.075000048 308.1499939
 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 1 2
 inside ddf_integrate- 4: before ddf_integrate= 3 37 0 1 0 0 0

F 0 0 0
 inside ddf_integrate- 1: stop_subtime for, id= 3 65 18 91
 inside ddf_integrate- 2: inside DO-WHILE:= 0 3
 inside solve_nmm: id,dt,istep = 3 -37.00000000 0
 inside solve_nmm: pd,u,v,t = 1044.691650 29.69166756

2.691666603 319.3833313
 inside solve_nmm: pd,u,v,t = 1044.691650 29.69166756

2.691666603 319.3833313
 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 1 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 2: inside DO-WHILE:= 1 3
 inside solve_nmm: id,dt,istep = 3 -37.00000000 1
 inside solve_nmm: pd,u,v,t = 1044.383301 29.38333511

2.383333206 318.7666626
 inside solve_nmm: pd,u,v,t = 1044.383301 29.38333511

2.383333206 318.7666626
 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 2 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 2: inside DO-WHILE:= 2 3
 inside solve_nmm: id,dt,istep = 3 -37.00000000 2
 inside solve_nmm: pd,u,v,t = 1044.074951 29.07500267

2.074999809 318.1499939
 inside solve_nmm: pd,u,v,t = 1044.074951 29.07500267

2.074999809 318.1499939
 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 3 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 6: finish time intgration
 inside ddf_integrate- 8: finish 1 cycle, imode,istep,id= 1 3 3
 inside ddf_integrate- 5: after DO WHILE 2
 inside ddf_integrate- 2: inside DO-WHILE:= 1 2

 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 143 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 2: inside DO-WHILE:= 143 3
 inside solve_nmm: id,dt,istep = 3 -37.00000000 143
 inside solve_nmm: pd,u,v,t = 1026.499023 11.50007915 -

15.50000286 282.9998779
 inside solve_nmm: pd,u,v,t = 1026.499023 11.50007915 -

15.50000286 282.9998779
 inside ddf_face: imode = 1
 inside ddf_integrate- 3: inside child-DO WHILE:= 144 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 6: finish time intgration
 inside ddf_integrate- 7a: imode=1 after initialize ddf arrays=

id, 3 144
 inside ddf_integrate- 8: finish 1 cycle, imode,istep,id= 1 144

3
 inside ddf_integrate- 5: after DO WHILE 2
 inside ddf_integrate- 6: finish time intgration
 inside ddf_integrate- 7a: imode=1 after initialize ddf arrays=

id, 2 48
 inside ddf_integrate- 8: finish 1 cycle, imode,istep,id= 1 48 2
 inside ddf_integrate- 5: after DO WHILE 1

 inside ddf_integrate- 6: finish time intgration
 inside ddf_integrate- 7a: imode=1 after initialize ddf arrays=

id, 1 16
 inside ddf_integrate- 8: finish 1 cycle, imode,istep,id= 1 16 1
 in ddf-init: 10, after call to ddf_integrate, imode= 1
 inside child_time -1, kid, id = 1 2
 inside child_time -2, kid, id, ncount = 1 2 2
 id, timestep = 2 111 0 1 0 0 0 F 0 0 0
 inside child_time -3, more to search, ncc, gridid = 2 2
 inside child_time -4 , kid, id, ncount = 1 3 3
 id, timestep = 3 37 0 1 0 0 0 F 0 0 0
 inside child_time -5 , imore, ncount, ncc= 1 3 2
 inside child_time -3, more to search, ncc, gridid = 3 3
 inside child_time -5 , imore, ncount, ncc= 0 3 3
 in ddf-init: 9b, after call to child_time for mode=2
 inside ddf_integrate- 1: stop_subtime for, id= 1 101 18 99
 inside ddf_integrate- 2: inside DO-WHILE:= 0 1
 inside solve_nmm: id,dt,istep = 1 333.0000000 0
 inside solve_nmm: pd,u,v,t = 983.3496704 -6.650001049 -

15.64999962 256.7001343
 inside solve_nmm: pd,u,v,t = 983.3496704 -6.650001049 -

15.64999962 256.7001343
 in ddfilter nx,istep,mx,hnw,: 1 0 16 0.1300427946E-02
 in ddfilter: ddfv-p,u,t: 1 0 1.278775334 -0.8647846989E-02

0.3338200152
 inside ddf_face: id, nx,istep = 1 1 0
 inside ddf_face: imode = 2
 inside ddf_integrate- 3: inside child-DO WHILE:= 1 1
 inside ddf_integrate- 4: before ddf_integrate= 2 111 0 1 0 0

0 F 0 0 0
 inside ddf_integrate- 1: stop_subtime for, id= 2 78 18 92
 inside ddf_integrate- 2: inside DO-WHILE:= 0 2
 inside solve_nmm: id,dt,istep = 2 111.0000000 0
 inside solve_nmm: pd,u,v,t = 1011.499634 1.500002384 -

16.50000191 272.9998779
 inside solve_nmm: pd,u,v,t = 1011.499634 1.500002384 -

16.50000191 272.9998779
 in ddfilter nx,istep,mx,hnw,: 2 0 48 0.1215211232E-03
 in ddfilter: ddfv-p,u,t: 2 0 0.1229185686 0.1822819759E-03

0.3317525238E-01
 inside ddf_face: id, nx,istep = 2 2 0
 inside ddf_face: imode = 2
 inside ddf_integrate- 3: inside child-DO WHILE:= 1 2
 inside ddf_integrate- 4: before ddf_integrate= 3 37 0 1 0 0 0

F 0 0 0
 inside ddf_integrate- 1: stop_subtime for, id= 3 65 18 91
 inside ddf_integrate- 2: inside DO-WHILE:= 0 3
 inside solve_nmm: id,dt,istep = 3 37.00000000 0
 inside solve_nmm: pd,u,v,t = 1026.807373 11.80841255 -

15.19166946 283.6165466
 inside solve_nmm: pd,u,v,t = 1026.807373 11.80841255 -

15.19166946 283.6165466
 in ddfilter nx,istep,mx,hnw,: 3 0 144 0.1273696034E-04
 in ddfilter: ddfv-p,u,t: 3 0 0.1307840459E-01

0.1504032844E-03 0.3612412605E-02
 inside ddf_face: id, nx,istep = 3 3 0

 inside ddf_face: imode = 2
 inside ddf_integrate- 3: inside child-DO WHILE:= 32 1
 inside ddf_integrate- 4: before ddf_integrate= 2 111 0 1 0 0

0 F 0 0 0
 inside ddf_integrate- 1: stop_subtime for, id= 2 78 18 92
 inside ddf_integrate- 2: inside DO-WHILE:= 93 2
 inside solve_nmm: id,dt,istep = 2 111.0000000 93
 inside solve_nmm: pd,u,v,t = 1047.577148 37.57497406

19.57499886 345.1501160
 inside solve_nmm: pd,u,v,t = 1047.577148 37.57497406

19.57499886 345.1501160
 in ddfilter nx,istep,mx,hnw,: 2 93 48 0.2647980582E-03

 in ddfilter: ddfv-p,u,t: 2 93 1029.318237 19.44078445
308.8487549

 inside ddf_face: id, nx,istep = 2 2 93
 inside ddf_face: imode = 2
 inside ddf_integrate- 3: inside child-DO WHILE:= 94 2
 inside ddf_integrate- 4: before ddf_integrate= 3 37 0 1 0 0 0

F 0 0 0
 inside ddf_integrate- 1: stop_subtime for, id= 3 65 18 91
 inside ddf_integrate- 2: inside DO-WHILE:= 279 3
 inside solve_nmm: id,dt,istep = 3 37.00000000 279
 inside solve_nmm: pd,u,v,t = 1061.034180 46.03345108

19.03331566 352.0667725
 inside solve_nmm: pd,u,v,t = 1061.034180 46.03345108

19.03331566 352.0667725
 in ddfilter nx,istep,mx,hnw,: 3 279 144 0.1244540617E-03
 in ddfilter: ddfv-p,u,t: 3 279 1044.203979 29.61127853

319.1184082
 inside ddf_face: id, nx,istep = 3 3 279

 inside ddf_face: imode = 2
 inside ddf_integrate- 3: inside child-DO WHILE:= 287 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 2: inside DO-WHILE:= 287 3
 inside solve_nmm: id,dt,istep = 3 37.00000000 287
 inside solve_nmm: pd,u,v,t = 1062.575928 47.57512665

20.57497597 355.1501160
 inside solve_nmm: pd,u,v,t = 1062.575928 47.57512665

20.57497597 355.1501160
 in ddfilter nx,istep,mx,hnw,: 3 287 144 0.0000000000E+00
 in ddfilter: ddfv-p,u,t: 3 287 1044.629761 29.63002968

319.2601929
 inside ddf_face: id, nx,istep = 3 3 287
 inside ddf_face: imode = 2
 inside ddf_integrate- 3: inside child-DO WHILE:= 288 3
 inside ddf_integrate- 5: after DO WHILE 3
 inside ddf_integrate- 6: finish time intgration
 inside ddf_integrate- 7b: imode=2 after initialize ddf arrays=

id, 3 288

 after -7b: pd,u,v,t = 1044.629761 29.63002968 2.630000353
319.2601929

 ZEROED OUT PRECIP/RUNOFF ARRAYS
 ZEROED OUT SFC EVAP/FLUX ARRAYS
 ZEROED OUT ACCUMULATED SHORTWAVE FLUX

ARRAYS
 ZEROED OUT ACCUMULATED LONGWAVE FLUX

ARRAYS
 ZEROED OUT ACCUMULATED LATENT HEATING

ARRAYS
 inside ddf_integrate- 7c: imode=2 after reset buckets 1 64 1

90 1 17
 inside ddf_integrate- 7d: imode=2 before calling qprint: 3 64

90

 inside ddf_integrate- 8: finish 1 cycle, imode,istep,id= 2 32 1
 in ddf-init: 10, after call to ddf_integrate, imode= 2
 in ddf-init: 11, before put back original namelist
 in ddf-init: 12, before put back original clock
 in putback: 0, inside putback
 in putback: 1, after grid1, id= 1
 id, timestep = 1 333 0 1 0 0 0 F 0 0 0
 in putback: 2, in do-kid, kid, id = 1 2
 id, timestep = 2 111 0 1 0 0 0 F 0 0 0
 in putback: 3, ncount = 2
 in putback: 4, ncc = 2
 in putback: 5, do-kid2 1
 id, timestep = 3 37 0 1 0 0 0 F 0 0 0
 in putback: 6, before sibling
 in putback: 7, imore = 1 3 2
 in putback: 4, ncc = 3
 in putback: 6, before sibling
 in putback: 7, imore = 0 3 3
 in ddf-init: 13, after set back original clock
 good stop in driver
Job /opt/lsf/bin/poejob -euilib us ../test.exe

Reference
Huang, X.-Y., and P. Lynch, 1993: Diabatic digital-filtering initialization: Application to

the HIRLAM model. Mon. Wea. Rev., 121, 589-603.
Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital

filter. Mon. Wea. Rev., 120, 1019-1034
Rasch, P. J., 1985: Developments in normal model initialization. Part 1: A simple

interpretation for normal model initialization. Mon. Wea. Rev., 113, 1746-1752.
Williamson, D. L., and C. Temperton, 1981: Normal mode initialization for a multi-level
gridpoint model. Part 2: Nonlinear aspects. Mon. Wea. Rev., 109, 744-757.

Fig. 1, Example of large initial oscillations by unbalanced initial conditions: first 6h
forecast of (a) central sea-level pressure and (b) maximum wind speed for Katrina forecast
from 0000UTC 29 August 2005, (c) sea-level pressure analysis and (d) 1h forecast of sea-
level pressure for Katrina forecast from 0000UTC 30 August 2005.

Fig.2. Schematic diagrams of time integration procedures for adiabatic and diabatic digital
filter initialization.

Fig. 3. Same as Fig.1, except after diabatic digital filter initialization (red). The blue lines
are for adiabatic and brown lines are for type-2 diabatic filtering (DIAB2).

Fig. 4. Initial analysis used in Fig. 1, (a)
sea-level pressure and (b) 850 mb wind.

Fig. 5. Same as Fig. 4, except after DDF
Initialization.

Fig. 6. (a) analyzed and (b) DDF initialized 850 mb wind at 0000UTC 30 August 2005
used for Katrina forecasts shown in Fig. 1c and Fig. 3c.

Fig. 7. Another Katrina forecast from 0000UTC 29 August 2005 with a better analysis (a)
sea-level analysis, (b) 850mb wind analysis, and first 6h forecast of (c) central sea-level
pressure, and (d) maximum wind speed without initialization (green), with adiabatic (blue),
diabatic (red), or diabatic type-2 initialization.

Fig. 8. Same as Fig. 7c and Fig. 7d, except for tropical cyclone Nabi forecast starting from
1200 UTC 5 September 2005.

Fig. 9. Forecasts for Katrina from 0000UTC 28 August 2005 with (red) and without DDF
initialization, (a) central sea-level pressure and (b) maximum wind speed.

Fig. 10. Same as Fig. 9, except for Haitang from 1200UTC 16 July 2005.

Fig. 11. Comparisons of COAMPS 58 forecast statistics with (green bars or red line) and
without (purple bars or blue line) DDF initialization, (a) track error of 45-km mesh, (b)
track error of 15-km mesh, (c) track error of 5-km mesh, and (d) maximum wind speed
error of 5-km mesh. Observed cyclone positions and maximum wind speeds received from
TPC or JTWC are used in computing the forecast errors.

