NOAA Joint Hurricane Testbed (JHT) Mid-Year Project Progress Report, Year 2

Date: March 29, 2013

Reporting Period: August 1 2012 – January 31 2013

Project Title: Development of a Probabilistic Tropical Cyclone Genesis

Prediction Scheme

Principal Investigator: Jason Dunion, University of Miami/CIMAS – NOAA/HRD

Co-PIs: John Kaplan, NOAA/HRD

Andrea Schumacher, CSU/CIRA

Co-Investigator: Joshua Cossuth, Florida State University

Award Period: August 1, 2011 – July 31, 2013

1. Long-term Objective and Specific Plans to Achieve Them:

The main goal of this project is to develop a disturbance-following tropical cyclone (TC) genesis index (TCGI) to provide forecasters with an objective tool for identifying the 0-48hr and 0-120hr probability of TC genesis in the North Atlantic basin. Predictors from a variety of sources were tested and potentially integrated into this new scheme and included Dvorak T-number / CI value estimates, environmental and convective parameters currently used in the NESDIS TC Formation Probability (TCFP) product (fixed grid scheme), environmental parameters from SHIPS that are relevant to TC genesis, and total precipitable water (TPW) retrievals from microwave satellites. Details about specific efforts that will be taken to achieve this goal can be found in Section 3.

2. Accomplishments:

a. Begin sensitivity testing for optimal combination of TCGI predictors (0-48h and 0-120h).

In year 1, 60 potential TCGI predictors were identified. The methodology used to determine the optimal combination of TCGI predictors was similar to that used to develop the rapid intensity index (RII) by Kaplan et al. (2010). The only predictors selected for optimal testing are those for which it had been shown that statistically significant differences existed at the 99.9% level between the mean values of the genesis and non-genesis samples. Sensitivity tests (including linear discriminant analyses) were conducted to determine which combination of TCGI predictors and predictor weights yielded the most skillful genesis forecasts. Resulting predictor weights and probabilities are shown in Figure 1. The optimized TCGI provides a skillful forecast over the developmental dataset (2001-2010) relative to various reference forecasts (Figure 2).

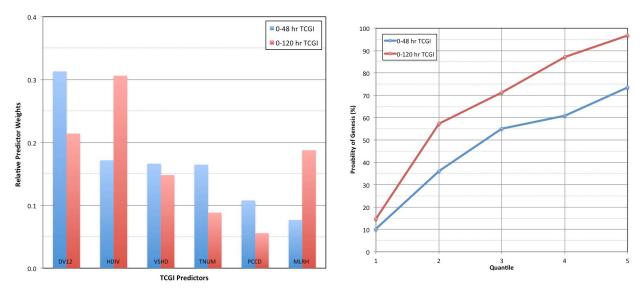


Figure 1. The relative predictor weights (left) for the prototype TCGI and the corresponding genesis occurrence frequency (%) for the five quantiles that were utilized (see Kaplan et al. 2010 for more details). The predictors used in the TCGI are GFS 12-hr vortex tendency (DV12), 850-hPa divergence (HDIV), 850-200 hPa vertical shear (VSHD), Dvorak T-number (TNUM), GOES percent of cold cloud (<-40 C) pixel coverage (PCCD), and GFS 600-hPa relative humidity (MLRH). Note that DV12, HDIV, VSHD, PCCD, and MLRH are averaged over a radius of 500km.

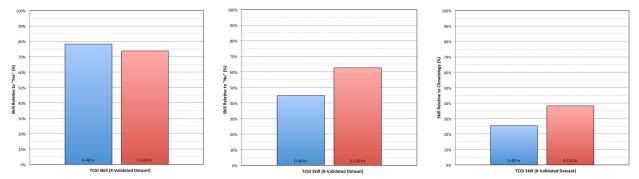


Figure 2. Skill of the TCGI relative to an all "yes" forecast (left), an all "no" forecast (middle), and climatology (right).

b. Develop code for running TCGI in real time (0-48h and 0-12h).

Real-time TCGI code development is currently underway. The TCGI real-time resting could be run in real-time at CIRA and provide 0-48h and 0-120h probabilities of TC formation for invest disturbances of interest. Pending project acceptance, it is proposed that the TCGI output be could be displayed as a part of the Statistical Hurricane Intensity Prediction Scheme (SHIPS) text output file. An example of the possible output format is shown in Figure 3.

		GOES	INVEST				12 12						
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
V (KT) NO LAND	30	34	38	43	48		69	80	86	87	89	92	90
V (KT) LAND	30	34	38	43	48		69	62	43	43	45	48	46
V (KT) LGE mod	30	33	37	40	44		60	54	39	41	47	53	59
Storm Type	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP
Prob of Genesis							70%						90%
SHEAR (KT)	3	2		9	10		12	9	15	17	19	18	17
SHEAR ADJ (KT)		-2	0	-2	-3		-6	-3	-3	-5	-4	-1	-6
SHEAR DIR	312	317	212	248	274		293	257	248	259	267	235	276
SST (C)	28.5	28.7 150	28.8	28.8	28.8		28.8	28.7	28.8	29.2	29.4 158	29.6	29.9
POT. INT. (KT) ADJ. POT. INT.	147 151	155	151	151 155	151 152	150 146	149	147 138	139	145	146	161 147	166 149
							-52.2						
TH_E DEV (C)	11	11	12	13	12	12	12	13	12	11	11	10	9
700-500 MB RH	54	53	53	53	54		58	56	58	60	59		69
GFS VTEX (KT)	9	10		12	12		17	19	20	20	21		25
850 MB ENV VOR	75	75	68	56	52		44	49	47	57	65	86	89
200 MB DIV	37	65	56	29	22		35	85	37	58	46	81	58
700-850 TADV	-7	-2	1	0	1		2	-5	5	-1	4	2	18
LAND (KM)	767	643	568	561	451	145	0	-33	-44	24	31	35	56
LAT (DEG N)	14.3	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x
LONG(DEG W)	54.9	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x	xxx.x
STM SPEED (KT)	18	18	18	18	16	13	11	10	10	10	9	8	7
HEAT CONTENT	68	76	66	70	81	70	69	84	77	56	23	48	33
FORECAST TRAC T-12 MAX WIND GOES IR BRIGH % GOES IR PIX ** 2012 A	: 25 ITNESS ELS WI	TEMP.	STD DI < -20 (PRESSUR EV. 50 50	RE OF 5 0-200 I 0-200 I	STEERIN KM RAD: KM RAD:		(MEAN): 604 N=14.5) N=65.0)	(MEA		Y: -17/	2
850 MB DVG	(10**-	-7s-1)): 0	.3 Rar	nge:-0	0.87 t	0 0.	5 Sco	led/W	ated '	Val:	0.8/	2.4
12-HR VORTE	X TENE	DENCY	: 0	.6 Rar	nge:-1	1.23 t	0 0.	8 Sco	led/W	gted '	Val:	1.1/	2.3
850-200 MB	SHEAR	(KT)			-		0 3.			······		0.9/	1.7
600 MB RH		-			-		o 89.		***			0.6/	0.7
% <-40C GOE	S TD F				_		o 99.		***			0.8/	1.2
					_					······			
DVORAK T-NU	ч		: 1	.v Kar	ige:	0.5 t	o 2.	2 2C0	rea/W	gtea	val:	0.7/	2.2

Figure 3. Proposed output format for the TCGI (incorporated into the SHIPS text output data file).

3. Current / Future Year 2 Efforts:

With the completion of the development and sensitivity testing of the TCGI algorithm, the remainder of the Year 2 efforts will focus on operational code development and real-time testing of the TCGI. These efforts will include:

on
:
or